
Understanding Statistics Concepts Using Simulation In R 

Leslie Chandrakantha 
John Jay College of Criminal Justice of CUNY 

Mathematics and Computer Science Department 
524 West 59th Street, New York, NY 10019 

lchandra@jjay.cuny.edu 
 

Abstract 
Learning statistics concepts are important for college students. The ability to understand, 
interpret, and evaluate research findings are essential skills. Many different approaches have 
been used for providing   statistics instructions and enhancing the conceptual understanding. 
Some concepts such as sampling distributions, confidence intervals, and hypothesis testing are 
difficult to teach and to understand. In this paper, we describe how to use simulation using R 
programming environment. R is free, and has flexible properties which make it suitable for 
introductory statistics students. The paper introduces R functions relevant to each topic.  
 
1. Introduction 
Students in introductory statistics classes often struggle to understand the fundaments concepts 
such as sampling distributions, central limit theorem, confidence intervals, and hypothesis 
testing. Instead of understanding fundamental concepts and applying statistical procedures 
properly, many students focus on memorizing methods of performing calculations using 
calculators or software.  This approach does not provide good foundation for their future courses, 
conducting research, analyzing data, and making correct conclusions.  The traditional way of 
teaching using book and lecture based instruction does not give a good understanding of the 
concepts to many students. Advances in technology have enabled instructors to experiment with 
different teaching methods. Simulation with the help of computers can be a very effective tool in 
getting a good grasp of these concepts. One of the most challenging aspects to teaching and 
learning statistics is that many statistical concepts are based on the issue of what would happen if 
a random process such as random sampling from a population were repeated a large number of 
times. This abstract notion is very difficult for most students to grasp. Technology provides the 
opportunity to make this abstract idea more concrete by enabling students to repeat such random 
processes a very large number of times and describe their observations first hand. We can use 
simulation using computers to perform these types of experiments.  

The American Statistical Association has published Guidelines for Assessment and Instruction in 
Statistics Education (GAISE) [7] in order to improve student learning. These guidelines 
recommend active learning of concepts approach in teaching and learning statistics.  Simulations 
performed both manually and using computers are recommended in the GAISE report as a useful 
tool for enhancing student learning. In recent years, there has been much interest in the use of 
simulation in teaching fundamental statistical concepts.  Mills [9] has given a comprehensive 

ICTCM.COM

ICTCM  28th International Conference on Technology in Collegiate Mathematics

101



review of literature of computer simulation methods used in all areas of statistics to help students 
understand difficult concepts. Cobb [5] noted that incorporating computer simulation techniques 
to illustrate the key concepts and to allow students to discover important principles themselves 
enhances their knowledge.  For more examples of the use of simulation to teach statistics see [1], 
[2], [3], [4], and [8].  

R is increasingly being used as a tool for statistics education. Many introductory and 
higher level statistics instructors are now using R to teach and perform statistical calculation, 
even though it is bit challenging to write statements in the command line. R can be used in 
simulation effectively. R can easily generate random samples from variety of probability 
distributions. A valuable introduction to R for introductory statistics is given in Dalgaard [6]. In 
this paper, we describe how to use R commands to generate different random samples from 
populations, compute the sampling distribution of the mean to understand its properties and the 
central limit theorem, and compute confidence intervals to understand the real meaning and its 
interpretation. In coming sections, we give an overview of R, simulation of sampling 
distributions, simulation of confidence intervals, and concluding remarks. 

                   

2. Brief Overview of R and Some R Commands 
R is a free software environment for working with data. R can be used to create sophisticated 
graphs, carry out statistical analyses, and run simulations. R is also a programming language 
with set of built-in-functions, so with some knowledge, students can write their own codes for 
statistical computations. For computationally intensive tasks, one can incorporate functions 
written in others languages such as C, C++, and FORTRAN. R compiles and runs on wide 
variety of UNIX platforms, Windows and MacOS. As of writing this paper, the most recent 
version of R was R 3.2.3. R is available from http://www.r-project.org. To install R 3.2.3 on your 
operating system, download R from above site using the closest mirror site to your location and 
choose the appropriate link for your operating system.   

R is a relatively simple syntax driven, a case sensitive language. Even though the syntax for 
writing instructions may be somewhat difficult initially, most students with little or no prior 
programming experience have become comfortable using R.  R is an object oriented program 
that works with data structures such as vectors (one dimensional array) and data frames (two 
dimensional arrays). A vector contains a list of values.  When R is started, we will see a window 
that is called R console. This is where we type our commands and see the text results. Graphics 
appear in a separate window.  R console is similar to the window in Figure 1: 

 

ICTCM  28th International Conference on Technology in Collegiate Mathematics

ICTCM.COM
102



 
Figure 1: R Console 

 
The > is called the prompt. We type R commands at the prompt. To quit R we type > q( ).  

R as a calculator: 
At the prompt we enter the mathematical expression and hit enter key and it will calculate the 
result and display it. Following is an example: 

> 2 + 3 
[1] 5 
> 2*3 - 10 
[1] -4  
> 3^5 
[1] 243 

The standard arithmetic operators +, -, *, and / are used in expressions and ^ is used for 
exponentiation. These operations have the standard order of precedence with exponentiation 
highest and addition/subtraction lowest but we can control order of precedence using 
parentheses.    

The results of a calculation can be assigned to a variable (object in R) using <- or =. In this paper, 
we will use <-.  The following code segment demonstrates an evaluation of a mathematical 
expression: 

ICTCM.COM

ICTCM  28th International Conference on Technology in Collegiate Mathematics

103



>  x <- 2*3 + 5 
> x 
[1] 11 

Vectors and functions 
Even though we can work with single numbers (scalars), R is primarily designed to work with 
vectors and functions. In R, a vector is a sequence of data values of the same type.  The function 
c is used to create vectors from scalars. Following statement creates a vector:  

> x <- c(2, 4, 6, 8, 10) 
> x 
[1]  2  4  6  8 10 

Once we have a vector of numbers, we can apply built-in functions to get some useful 
summaries: 

To obtain the sum of the values of the vector: 
> sum(x)    
[1] 30 

To obtain the number of values of the vector: 
> length(x)      
[1] 5 

The following functions can be used to calculate basic summary statistics: 

Mean:  mean(x) 
Median: median(x) 
Maximum:  max(x) 
Minimum: min(x) 
Standard deviation: sd(x) 
Variance: var(x) 
Five number summary:  summary(x) 

The following functions can be used for visual data displays: 

Stem-and-leaf diagram:  stem(x) 
Histogram:  hist(x) 
Box plot: boxplot(x) 
Scatter Plot: plot(x, y) 

The following functions can be used to generate random numbers: 

To generate a random sample of size n from a vector of values x with replacement: 
sample(x, n, replace = TRUE) 
To generate a random sample of size n from a vector of values x without replacement: 
sample(x, n, replace = FALSE) 

ICTCM  28th International Conference on Technology in Collegiate Mathematics

ICTCM.COM
104



If x is a single number in above two cases, it generates a sample from 1 to x. 

The following functions generate random samples of size n from indicated probability 
distributions: 

runif(n, a, b) – from uniform distribution from a to b. 
rbinom(n, m, p) – from binomial distribution with parameters m and p. 
rpois(n, λ)  - from Poisson distribution with parameter λ. 
rnorm(n, μ, σ) – from normal distribution with mean μ and standard deviation σ. 
rt(n, df) – from t distribution with degrees of freedom df. 
rchisq(n, df) – from Chi-square distribution with degrees of freedom df.  

R has the standard control structures such as if–else, while, and for statements. We will introduce 
these statements when we discuss simulation in coming sections. 

3. Simulating Sampling Distribution of Mean 
The gateway to statistical inferences is the sampling distributions. It is essential to gain a good 
understanding about the concepts of sampling distributions for students in statistics classes.  At 
the beginning of the class, we give the definition of the sampling distribution of the mean, 
introduce the properties, and explain the connection between sampling distributions and the 
central limit theorem. The sampling distribution of the mean is the probability distribution of 
sample mean based on all possible simple random samples of the same size from the same 
population.  The sampling distribution of the mean has the following properties: 

 The mean of all sample means is equal to the population mean. 
 The standard deviation of the sample means (known as the standard error) is equal to the 

population standard deviation divided by square root of the sample size.  
 Sample means are more normal than individual observations. 

The central limit theorem explains the shape of the sampling distribution. This theorem tells that 
for a population of any distribution, the distribution of the sample mean approaches a normal 
distribution as the sample size increases. The larger the sample size, the better the 
approximation. Based on this theorem, we can use the normal distribution for inferences about 
the mean for larger sample sizes, even if the original population is not normally distributed. 
Many students are using this fact without understanding the underlying concept. Simulation 
allows students to visualize this fact.   

Now we demonstrate the simulation of the sampling distribution using R. The students have 
computers in the classroom so they follow our instructions and generate their own. All the 
computers in classrooms have R software. We consider different population distributions and 
different sample sizes to observe the effects of the sample size and the shape of the original 
distribution on the sampling distribution of the mean. The uniform, chi-square, and normal 
populations and sample sizes of 10, 25, and 50 are considered. These three populations have 
uniform, skewed, and bell shapes so each student visualizes the fact that as the sample size 
increases the sampling distribution approximates a normal distribution for different original 
shapes. This is one of the main points that we want to convince our students as a result of this 
lesson. Students were taught these three populations, their shapes, and parameters in previous 
lessons so we just briefly explain them to refresh their memory and introduce the R functions to 

ICTCM.COM

ICTCM  28th International Conference on Technology in Collegiate Mathematics

105



generate random variants form these three populations. Table 1 gives the characteristics of the 
samples and the R functions. The value of n in R functions is the sample size. 

Distribution Sample Sizes Mean Std Deviation  R Function 
Uniform (0, 100) 10, 25, 50 50 28.87 = runif(n, 0, 100) 
Normal (100, 10) 10, 25, 50 100 10 = rnorm(n, 100, 10) 

Chi-square (2) 10, 25, 50 2 2 = rchisq(n, 2) 
Table 1: Sample characteristics 

Now we show R codes for generating random samples of 10 uniform random numbers and 
computing the sampling distribution of the mean. The R function dunif is used to calculate the 
uniform density. First we show the probability density function (pdf) graph of above uniform 
distribution using following R code: 

> x  <- seq(from = 0, to = 100, by = 0.1) 
> dens <- dunif(x,0,100) 
> plot(x, dens, type = "l") 
 
Using this code segment, we generate a sequence of numbers from 0 to 100, incrementing by 0.1 
and store them in vector x. The dens vector has the height of probability density function (pdf) at 
each x value. The plot command draws the graph of the uniform density shown in Figure 2: 
 

 
Figure 2 

The following code segment generates 1000 random samples of size 10 from above uniform 
distribution and computes the sample means. The R function runif is used to generate random 
sample from the uniform distribution. The syntax of the function is runif(n, a, b). This function 
returns a random sample of size n from the uniform distribution from a to b.  

> means <- c() 
> for(i in 1:1000){ 
+ y <- runif(10, 0, 100) 
+ means[i]  <- mean(y)} 
> mean(means) 
[1] 49.75268 

ICTCM  28th International Conference on Technology in Collegiate Mathematics

ICTCM.COM
106



> sd(means) 
[1] 9.164981 
> hist(means, main = "U(0,100), n = 10") 

The for loop iterates 1000 times to generate 1000 random samples from uniform distribution and 
calculates sample means. The means vector holds these sample means. The runif(10,0,100) 
function generates a random sample of size 10 from uniform distribution from 0 to 100. This 
random sample is stored in vector y for the ith iteration of the for loop. The means[i] variable 
stores the corresponding sample mean for each sample for the ith iteration. The mean and sd 
commands compute the mean and standard deviation of 1000 sample means. The 1000 sample 
means are considered as the sampling distribution of the mean to verify the validity of the 
properties the mean and standard deviation (standard error) of the sampling distribution. To 
study the shape of the sampling distribution, we create a histogram of the 1000 sample means 
using hist command.  Similarly, we generate the sampling distributions and histograms for all the 
cases we have considered in this lesson. Figure 3 shows histograms for all the cases. In Figure 3, 
first, second and third column histograms are created from sample means from uniform, normal, 
and chi-square distributions respectively.  The first, second and third rows represent samples 
sizes 10, 25 and 50 respectively. These histograms allow students to understand the meaning of 
the central limit theorem. Students will be able to visualize that as the sample size increases, the 
shape of the distribution is becoming more normal and the sample means are less variable. At the 
end of the lesson, students are able to comprehend the central limit theorem and understand the 
properties of the sampling distribution discussed in the class. 
 
 

 
Figure 3: Histograms for Sample Means 

ICTCM.COM

ICTCM  28th International Conference on Technology in Collegiate Mathematics

107



4.  Simulating Confidence Intervals 
The topic of confidence intervals of parameter estimation is a difficult lesson to teach in statistics 
classes, particularly in introductory level.  Confidence intervals give the most likely range of the 
unknown population parameter.  In this discussion, we only consider the creating and 
interpreting confidence interval for mean (µ) assuming population standard deviation (σ) is 
known. Beginning of the class, we introduce the material that is needed and define the 
confidence interval for the mean as nX *Z , where Z* is the value of the standard normal 
curve with area C between critical points –Z* and Z* and n is the sample size. The confidence 
level C is the probability that the confidence interval actually does contain the population mean 
μ, assuming the estimation process is repeated a large number of times, Moore [10]. Students 
have major difficulties in understanding this last statement. Many students misunderstand this 
statement as saying that the majority of individual values are in this interval. It is important in 
this lesson that students understand in repeated sampling from a population, C percent of 
intervals (say 95%) would capture the true unknown mean. In using the traditional way of 
teaching, we only consider one sample and calculate one interval. This leads them to believe the 
wrong interpretation of the interval that there is a 95% chance that this interval will have the true 
mean.  

A computer simulation method using R will allow students to understand the true meaning of the 
confidence interval. After introducing the basic facts about confidence intervals to the class, we 
will calculate 95% confidence intervals for the population mean. The R function rnorm is used to 
generate a random sample from the normal distribution. The syntax of the function is rnorm(n, µ, 
σ). This function returns a random sample of size n from the normal distribution with mean µ 
and standard deviation σ.  

Now we show how to compute confidence intervals for different samples using R. For 95% 
confidence level, critical values –Z* and Z* are -1.96 and 1.96 respectively. The R code segment 
shown after this paragraph generates 100 random samples of size 30 from the normal distribution 
with mean 100 and standard deviation 10. The vectors means, lower and upper hold the sample 
means, lower and upper confidence interval values respectively. The parameters n, mu and sigma 
hold the sample size, mean, and standard deviation of the normal distribution. The for statement 
iterates 100 times to generate 100 random samples and calculate sample means and confidence 
intervals.  The rnorm(n, mu, sigma) function with n = 30 generates a random sample of 30 values 
from the normal distribution with mean 100 and standard deviation 10.  The means[i] variable 
stores the corresponding value of the sample mean for the ith iteration. Similarly, lower[i] and 
upper[i] variables store the lower and upper bounds of the confidence interval for the ith 
iteration. The second for statement count the number of confidence intervals containing the 
actual population mean mu. The variable p computes the proportion of intervals that contains the 
mean mu. This proportion should be close to 95% which is the assumed confidence level C.  We 
noticed that in our simulation, 96% of the confidence intervals do contain the true mean. If we 
generate another set of samples and compute the confidence intervals, we would find the new 

ICTCM  28th International Conference on Technology in Collegiate Mathematics

ICTCM.COM
108



proportion to be 95% or close to it. Since students are doing these steps themselves, they get a 
clear understanding of the meaning of confidence intervals.   

> means <- c() 
> lower <- c() 
> upper <- c() 
> n <- 30; mu <- 100; sigma <- 10     # sample size and parameters  
> for(i in 1:100) { 
+ x <- rnorm(n,mu,sigma)       # generate a random sample 
+ means[i] <- mean(x)             # calculate mean for each sample 
+ lower[i] <- means[i] - 1.96*sigma/sqrt(n)           # calculate lower bound of interval 
+ upper[i] <- means[i] + 1.96*sigma/sqrt(n)   }     # calculate upper bound of interval 
> count  <- 0                # count will hold number of intervals do contain the mean mu 
> for(i in 1:100) { 
+ if(mu >= lower[i] && mu <= upper[i]) 
+ count  <- count + 1  } 
> p  <- count/100     # proportion of intervals do contain the mean mu 
> p 
[1] 0.96 

5.  Conclusion 
Many students have difficulties understanding statistics concepts such as sampling distributions 
and confidence intervals. Simulations can be effective learning tools for helping students to 
understand abstract concepts associated with repeated random processes. We have demonstrated 
the use of simulation using R in teaching these topics. This is a very useful way to visualize and 
understand the sampling distribution, central limit theorem, and confidence intervals. These 
simulation methods are acceptable to students with varying backgrounds of mathematics. More 
empirical studies need to be conducted to measure the effectiveness of using simulations as a 
pedagogical tool.  

References 
[1] Barr, Graham D. and Scott, Leanne. (2011). Teaching Statistics in a Spreadsheet 
Environment using Simulation.  Spreadsheetsin Education (eJSiE), 4(3). 
http://epublications.bond.edu.edu.au/ejsie/vol4/iss3/2.  

[2] Butler, A., Rothery, P., & Roy, D. (2003). Minitab Macros for Resampling Methods. 
Teaching  Statistics, 25 (1), 22-25. 

[3] Chandrakantha, Leslie. (2014), Visualizing and Understanding Confidence Intervals and 
Hypothesis Testing Using Excel Simulation. The Electronic Journal of Mathematics and 
Technology (EJMT), 8(3): p 212-221 

ICTCM.COM

ICTCM  28th International Conference on Technology in Collegiate Mathematics

109



[4] Christie, D. (2004).  Resampling with Excel. Teaching Statistics, 26 (1), 9-14. 

[5] Cobb, P. (1994). Where is the Mind? Constructivist and Sociocultural Perspectives on 
Mathematical Development. Educational Researcher, 23, 13-20. 

[6] Dalgaard, P., Introductory Statistics with R, 2nd Edition, New York, NY: Springer, 2008. 

[7] GAISE (2005). Guidelines for Assessment and Instruction in Statistics Education Report. 
American Statistical Association, Alexandria, VA. http://www.amstat.org/education/gaise/ 

[8] Hagtvedt, R., Jones, G. T., & Jones, K. (2008). Teaching Confidence Intervals Using 
Simulation. Teaching Statistics, 30 (2), 53-56. 

[9] Mills, J. D. (2002). Using Computer Simulation Methods to Teach Statistics: A Review of 
the Literature. Journal of Statistics Education (Online), 10 (1). 
http://www.amstat.org/publications/jse/v10n1/mills.html 

[10] Moore, D. S. (1996). Essential Statistics. New York, USA: W. H. Freeman & Company. 

 

ICTCM  28th International Conference on Technology in Collegiate Mathematics

ICTCM.COM
110


