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Abstract: The classic Birthday Problem finds the probability that at least two people in a
group of k share the same birthday. The solution involves nothing more than basic
counting and probability. Here we look at extensions of this question with solutions that
are not as elementary, such as finding the probability that at least m people in a group of
k share a common birthday, for values of m larger than 2. We also examine the average
number of days on which there are at least m common birthdays, and the likelihood of more
than a single birthday being shared by a group of people. We compare the exact values
found for some of these problems with results from simpler approximation methods, such
as the Poisson distribution. These generalizations require substantially more theory and
computational power than the traditional birthday problem. The solutions involve
recurrence relations based on discrete probability computations and finding means using
indicator random variables. Their complexity makes technology essential in implementing
the necessary computations. The solutions are at the level of a senior undergraduate
mathematics major special project. The technology used is Maple.

The classic Birthday Problem from elementary probability is to find the likelihood that at
least two people in a group of k share a common birthday, and determine the smallest value
of'k for which that probability exceeds .5 . Its solution is a nice application of complements
and elementary counting techniques. The probability is given by:

_ 365-364-363-...4(365 -k +1)
365 :
since this is simply the complement of the event that all k birthdays fall on different days.

And it is well known that k = 23 is the turning point at which the probability exceeds .5 .
Many people are surprised at how low that threshold is.

1

Here we are concerned with finding answers to more complicated related questions with
less elementary solutions. For example, for a group of k people, one might ask about the
probability of at least one day with m common birthdays, for m > 2, or the likelihood of d
days with a common birthday for d > 1, or the expected number of days with more than one
birthday. The solutions to these questions are more involved mathematically and
computationally.
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In order to approach these questions, we define:

Prob(k, n, m, d) = the probability of at least d days, each with at least m birthdays,
in an n day year, for a group of k people.

We first find a computationally efficient recursion for these probabilities for the case when
d=1. That is, we will be working with the probability that at least d=1 day in an n day year
has at least m birthdays, for a group of k people. The recursion will induct on the number
of days in the year, n.

We break our computation of Prob(k, n, m, 1) into cases based on the number of birthdays
that occur on the nth day of the year. If we let i be that number, then we have for
Prob(k, n, m, 1):

mz—:l Ci(-)—E-r—l——lzlk-iProb(k—i,n—l,m, 1) + mz: M

i=0 n =0 n

with the last term being the probability that at least m birthdays occur on the nth day. With
some rearrangement we then have the working formula:

m-1 (1) (m-1)ki
Prob(k,n,m,1) =1 - Y, ~—————(1 - Prob(k-i,n-1,m, 1)) ,
i=0 n

with the initial conditions that Prob(k, n,m, 1)=0ifk<morn=0.

The following Maple code evaluates these probabilities for a range of values and stores
them. Note that it takes advantage of simpler direct computations, from the traditional
birthday problem, for m=2.

> Maxn := 365 ; Maxk := 400 ; Maxm := 5:
> st == time():
for n from 0 to Maxn do for k from 0 to Maxk do if n=0 then Prob(k,n,2,1):=0 else
Prob(k,n,2,1) := evalf{ 1 - binomial(n,k)*k!/(n"k) ) end if, end do; end do;
for m from 3 to Maxm do
for n from 1 to Maxn do
for k from 1 to Maxk do
if k>(m-1)*n then Prob(k,n,m,1) := 1 else if k<m then Prob(k,n,m,1) := 0 else
Prob(k,n,m,1):= evalf{ 1 - add( ( binomial(k,i)*(n-1)"(k-i)/n"k
)*(1-Prob(k-i,n-1,m,1)), i=0..(m-1))) end if end if;
end do; end do; end do;
time() - st;
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This routine took less than 2 minutes to run. With the probabilities stored we can examine
how the probability changes for n=365 and various values of m and k.

For example, if one is concerned with having at least one triple birthday, we evaluate:
> seq([10*k,Prob(10*k,365,3,1)],k=1..15);
> [10, 0.0008877457], [20, 0.0082426865], [30, 0.0285305042],

[40, 0.0668894861], [50, 0.1263751846], [60, 0.2072303207],

[70, 0.3064873273], [80, 0.4181689338], [90, 0.5341955714],

[100, 0.6458645064], [110, 0.7455259085], [120, 0.8279641283],

[130, 0.8910760072], [140, 0.9356999330], [150, 0.9647665029]

We can see the trend using pointplot:
> with(plots): pointplot({seq([k,Prob(k,365,3,1)],k=1..200)});
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The turning point for a better than even chance of a triple birthday is between k = 80 and
k =90 people. With a little trial and error we find it exactly as k = 88.

A similar trial and error process reveals the turning points for m = 3, 4, and 5. Thus we
have the following for m from 2 through 5:

> [23,2,Prob(23,365,2,1)];[88,3,Prob(88,365,3,1)];[187,4,Prob(187,365,4,1)];
[313,5,Prob(313,365,5,1)];
> [23, 2, 0.5072972343]

[88, 3,0.5110651107]

[187, 4, 0.5026853730]

[313, 5, 0.5010704762]

We now turn our attention to the likelihood of more than one day with at least m birthdays.
That is, d > 1. We continue to use the approach we’ve followed by inducting on the
number of days in the year. Unfortunately the recurrence is much deeper because we must
involve the number of people having a birthday on the nth day of the year, no matter how
large that is. Previously, because we were only interested in at least one day with m, we
could simply stop once that number was at least m and combine those cases into a single
term. Now, since we wish more than a single day with at least m, we must retain the
knowledge of exactly how many people are remaining to distribute onto the other days.
That is, we were previously able to employ an order m recurrence, regardless of k. Now
it must be order k.

Reasoning as before, wherei=1, 2, . . ., k is the number of people with a birthday on the
nth day, we have:

m-1 (1) (n-1)ki
Prob(k, n, m, d) = Y, A~/ Prob(k-i,n-1,m, d)
i=0 n
K (11() (n-1)ki
+ ——k—Prob(k-i,n—l,m,d-l) ,
i=m n

with the initial conditions that Prob(k, n, m, d) = 0 whenever k <md or d >n.

To avoid long runtimes, we implement this recurrence in Maple for m =2 only. That is,
we will be finding the probability of at least d days with more than one birthday. Although
this is limiting, it is the most natural next birthday question after finding probabilities for
at least one day with multiple common birthdays. The following routine, which assumes
the previously computed values for m = 1 and took approximately 50 minutes to run, yields
probabilities for a range of values with m = 2.
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> Maxd := 15: Maxn := 365: Maxk :=200:
> st :=time() :
for d from 6 to Maxd do
for n from 0 to Maxn do
for k from 0 to Maxk do
if k<2*d then Prob(k,n,2,d) := 0 else if n=0 then Prob(k,n,2,d) := 0 else
Prob(k,n,2,d):= evalf( (((n-1)/n)"k)*Prob(k,n-1,2,d)+
((k*(n-1)*(k-1))/(n"k))*Prob(k-1,n-1,2,d) +
add( ( binomial(k,i)*(n-1)*k-i)/n*k )*Prob(k-i,n-1,2,d-1),i=2..k))
end if; end if;
end do; end do; end do;
time() - st;

From this computation we find that the chances of finding at least two days with at least
two birthdays in a group of 23 is:
> Prob(23, 365, 2, 2),

0.1363714950

In a group of 50 people this same event has probability:
> Prob(50, 365, 2, 2);
0.8495070001

This is quite likely. In fact, going further with k = 50 and larger numbers of days with at
least 2 birthdays, we find:

> Prob(50, 365, 2, 3);
0.6242529504

> Prob(50, 365, 2, 4);
0.3694489176

These are surprisingly high probabilities. In recalling the original birthday problem one is
motivated to ask what the 50% turning point is for d days with at least two birthdays, for
d=1,2,...10. Some graphing, together with trial and error, yields the following
thresholds:

> [1,23,Prob(23,365,2,1)]; [2,36,Prob(36,365,2,2)]; [3,46,(46,365,2,3)];
[4,55,Prob(55,365,2,4)]; [5,62,Prob(62,365,2,5)]; [6,69,Prob(69,365,2,6)];
[7,75,Prob(75,365,2,7)]; [8,81,Prob(81,365,2,8)];  [9,86,Prob(86,365,2,9)];
[10,92,Prob(92,365,2,10)];

[1, 23, 0.5072972343]
[2, 36, 0.5005548853]
[3, 46, 0.5037252118]
[4, 55, 0.5247976698]
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[5, 62, 0.5136663761]
[6, 69, 0.5232846131]
[7,75,0.5170479762]
[8, 81, 0.5229263173]
[9, 86, 0.5069590963]
[10, 92, 0.5309244813]

So , for example, if one would like a better than even chance of at least 5 different days
with more than one birthday, at least 62 people are required.

These surprisingly low values of k are supported by examining the expected number of
days in an n day year that have at least m birthdays, for a group of k people. To attack this
problem we define:

E(k, n, m) = the expected number of days with at least m birthdays in an n day year for a
group of k people.

A relatively simple use of indicator random variables provides a direct computation of
E(k,n,m). Fori=1,2,3,...,nwelet

X = 0, if there are fewer than m birthdays on day i
i 1, if there are at least m birthdays on day i | °

Then clearly the number of days with at least m birthdays is the sum of these random
variables. Counting the number of ways to have exactly i birthdays on a given day is
straightforward. Hence we may easily compute the expected value of each of these random

variables as:
m-1 (11() (n-1)k-i m-1 (]f) (m-1)ki
E(X)=0") ~—— +1:[1-) A"
i=0 n i=0 n

Since the expected value of a sum is the sum of the expected values, and there are n of
these random variables, we have:

i=0 nk

Since this expression demands very little computing power, it provides a nice shortcut to
getting a sense of how probabilities rise with k. And evaluating this for various values of
k and m with n = 365 reveals that the expected number of days grows rather quickly as k
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increases. For example, we have for the expected number of days with at least 2 birthdays:

E(40, 365, 2) = 1.994
E(60, 365, 2) = 4.364
E(80, 365, 2) = 7.516
E(100, 365, 2) = 11.360
E(120, 365, 2) = 15.812
E(140, 365, 2) = 20.797

This is certainly in line with our earlier discovery that, for a better than even chance of 10
days with at least 2 birthdays, only 92 people are needed.

We close with the looser question as to whether there is "magic number” for extensions of
the Birthday Problem that parallels the k = 23 answer for the traditional problem.
Certainly, given the variety of questions that could be asked concerning the number of days
and/or number of birthdays on a day, there is no one complete answer. The work we have
done, however, does point to one simple threshold for the sorts of extensions that most
naturally come to mind.

Recall that k = 88 is the turning point for a better than even chance of having at least one
day with at least three birthdays. Noting how the likelihood of multiple days with at least
two birthdays grows, we see that, for k = 88:

> seq([1,Prob(88, 365, 2,1) ], 1=1..10);
[1,0.9999892802], [2, 0.9998252804], [3, 0.9986388419],[4, 0.9932325040],
[5,0.9757937035], [6, 0.9333674275],[7, 0.8523683644], [8, 0.7277018879],
[9, 0.5700024362], [10, 0.4036773712]

Thus we find that, with 88 people you. ...
. .. . have a better than even chance of a triple (or more) birthday,
. .. . have a better than even chance of at least 9 days with more than one birthday,
. .. . are extremely likely to have at least 5 days with more than one birthday.

Put informally, 88 people might be a reasonable "magic number" for commonly thought of
birthday coincidences that go beyond the standard Birthday Problem. That is, a room of
88 people is more likely than not to be teaming with all sorts of birthday coincidences.
Finding shared birthdays is sometimes used as an icebreaker for larger groups of people.
This result could be interpreted to indicate that such an icebreaker will be most successful,
in terms of generating interesting coincidences, for groups of 88 or more.

As a check, we can easily simulate birthdays in Maple and check the distribution of
coincidences. The following procedure generates arandom collection of k birthdays, tallies
how many days have exactly 1 birthday, 2 birthdays, 3 birthdays, etc. and reports the results
in a vector form.
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> with(RandomTools): with(Statistics):
> SimulationDistribution := proc(k::integer)
Test := Vector(k, Generate(integer(range=1..365), makeproc=true)):
Tempo := Tally(Test): Length:= Count(Tempo):
Freqs := sort( [ seq(op(2,Tempo[i]),i=1..Length) ] );
Tally(Freqs);
end proc;

For example,

> SimulationDistribution(100);
[1=77,2=10,3=1]

indicates that for this sample of 100 birthdays, 77 days had a single birthday, 10 days had
two birthdays, and 1 day had three. To examine k = 88, we create 20 separate samples.

> for i from 1 to 20 do SimulationDistribution(88); end do;
[1=71,2=7,3=1]
[1=71,2=7,3=1]
[1=70,2=09]
[1=82,2=3]
[1=72,2=8]
[1=70,2=09]
[1=66,2=8,3=2]
[1=62,2=10,3=2]
[1=64,2=9,3=2]
[1=72,2=8]
[1=69,2=8,3=1]
[1=67,2=9,3=1]
[1=64,2=12]
[1=62,2=13]
[1=74,2=17]
[1=61,2=12,3=1]
[1=60,2=14]
[1=68,2=10]
[1=70,2=09]
[1=74,2=17]

Thus we find that 8/20 of the samples had at least one triple birthday. While not 50%, this
is within a reasonable margin of error. And we have 12/20 with at least nine days having
more than one birthday. This, too, is in line with our expectation, as is the finding that all
but one of the samples have at least 5 days with multiple birthdays.
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