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Mathematical models and numerical algorithms are explored for several technological 
challenges in physics, chemistry, aerothermodynamics, and evolution of dynamic systems 
in economics and weather forecast. Various mathematical concepts are examined to 
evaluate multifold integrals, dynamics of strange attractors, and solutions of differential 
equations with small parameters at the highest derivatives. 
 
1. Introduction 
 
A course on Numerical Methods typically covers introductory topics in numerical 
analysis for students of engineering, science, mathematics, and computer science who 
have completed elementary calculus, linear algebra and matrix theory. The course is 
usually limited to exploring basic algorithms [1] for solving traditional simple problems 
in sciences and engineering. As a result, the students have become inadequately prepared 
to construct proper mathematical models and explore more sophisticated algorithms of 
modern technological challenges. To reduce this gap, the author has offered a series of 
case studies [2], which provide concrete examples of the ways numerical methods lead to 
solutions of some scientific problems. The similar approach was promoted in [3]. 
 
Topics involve familiarity with Math concepts that are not often taught, or inadequately 
covered, including differential equations with singularities, Monte-Carlo simulation, 
asymptotic theory, attractors, and theories of chaos, instabilities, and catastrophes. 
Students demonstrate usually a lack of experience and knowledge of how to develop an 
adequate math model for a complex scientific or engineering problem. Therefore, we 
encourage all students to strengthen their abilities in various problem-solving techniques.  
 
The numerical analysis course material is likely to change rapidly. Just staying up to date 
with the latest threats and techniques is a real challenge for both an instructor and a 
student, and can consume large amounts of time and resources [2, 3]. 
 
2. Estimations of Multifold Integrals 
 
Many technological problems (e.g., calculations of transport coefficients and chemical-
reaction rates) require estimations of multifold integrals under the conditions when 
classical Newton-Cotes formulas for numerical integration [1, 3] could not be applied. 
Instead, Monte-Carlo simulation methods [4, 5] could be effectively used. In the first case 
study, students analyzed the rotational relaxation of a gas of homonuclear diatomic 
molecules. The realistic model of the intermolecular interaction [6] was used for 
calculating the redistribution of the rotational and translational energies upon collision. 
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The process of establishing equilibrium with respect to the rotational degrees of freedom 
in terms of the τ-approximation can be described by the relaxation equation Eq. (1) [7] 
with the following parameters (see Eq. 2 [7]) that determine the relaxation time τR1: 
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The expression for the energy ΔE = ΔE/μv2/2 = ΔEi + ΔEj transferred at the time of 
collision from the translational to the rotational degrees of freedom takes the form: 
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Here the following analytic expressions for the resulting angular velocities of the 
molecules are used [7]: 
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where pi and i are the initial reduced angular momenta and initial phases counted from 
the direction of the initial velocity of relative motion of the molecules, and various 
molecular interactive parameters have been defined in Refs. 6 and 7. 
 
To estimate the rotational relaxation time, the sixfold integrals were calculated at 200 
points over the range of temperatures from 200 K to 10,000 K, using the Monte Carlo 
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simulation technique [5], with 4000 tests at each point. The data for intermediate points 
were determined by means of the interpolation technique using cubic splines of defect 1 
with smoothing. The accuracy of the calculations was estimated as 1.5%. The 
experimental data (filled squares) [8, 9] for molecular nitrogen correlates well with the 
numerical results (empty squares) as shown in Fig. 1. 

 
 
Figure 1. Parameter p∙τR1(T) as a function of temperature: □, solution of Eq. (2) at the 
molecule parameter d* = 0.62 [6]; and ■, experimental data [8, 9]. 
 
3. Solving Singular Differential Equations 
 
Various problems of applied mathematics, thermophysics, and aerodynamics (e.g., 
stability of mechanical systems and flow boundary layers, fuel combustion, and heat 
protection of spacecraft) come to solving differential equations with small coefficients at 
the highest derivatives. This phenomenon leads to the formation of regions with small 
linear dimensions where gradients of functions are large. The numerical analysis of such 
problems by traditional box-schemes is restricted by non-uniform convergence or even 
divergence of numerical solutions. In this case study, the numerical solutions of the 
model singular ordinary differential equation have been evaluated for the linear boundary 
value problem [10]. The developed numerical method [11, 12] was used for the analysis 
of gas flow parameters in boundary and viscous shock layers under the conditions of 
blowing on the body surface and nonequilibrium chemical reactions. 
 
From a mathematical point of view, the increase of the flow rate of blowing gas or 
chemical-reaction rates is equivalent to the existence of a small coefficient at the highest 
derivative in the boundary-layer equations [10]. A sublayer (of uncertain location) with 
large gradients of functions is created. The gas flow in the boundary layer was studied 
using a two-point exponential box-scheme and an effective regularization algorithm [11]. 
The uniform second-order convergence was obtained for functions and derivatives in the 
full range of small parameters such as blowing factors and inverse chemical-reaction 
rates. The approach could be applied to boundary layers with gas injection and 
combustion [10, 11]. 
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3.1. The Model Linear Boundary Value Problem 
 
In general, the method is designed for solving the following model equation: 
 
       εu′′ + au′ – bu = d            (8) 
 
Here the parameter ε can accept very small magnitudes, and a ≥ 0, b ≥ 0. The solution of 
the equation (8) with constant coefficients is the following [11, 12]: 

 
(9) 

 
(10) 

 
(11) 

 
where A and B are arbitrary constants, and η is the main variable parameter. 
 
The solution (9-11) is used to obtain the box-scheme characteristics by considering that 
the functions as well as the derivatives are continuous in the cells [10, 11]. The two-point 
uniform exponential box-scheme was introduced in [11]. The identical problem was 
considered in [12] by using a three-point exponential box-scheme.  
 

  
a) Function u 

 
b) Function u′ 

Figure 2. Functions u and u′ as solutions of the linear boundary-value problem (12-14). 
 
The linear boundary value problem is studied for the following model singular ordinary 
differential equation [13] and boundary conditions: 
 
     εu′′ – (1 + x2)u = – (4x2 – 14x + 4)(1 + x)2           (12) 
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     u(0) – u′(0) = 0                  (13) 
 
     u(1) + u′(1) = 0                  (14) 
 
The numerical solutions of the equation (12) with boundary conditions (13) and (14) have 
been calculated by using the two-point exponential box-scheme [11]. The results for the 
function u and its derivative u′ are shown in Fig. 2. At various parameters ε, they 
demonstrate the formation of thin regions where gradients of functions are large. 
 
3.2. Gas Blowing into a Boundary Layer 
 
Consider the perfect-gas flow in the boundary layer (BL) near the stagnation point of a 
blunt body with uniform blowing at the surface [14]. The system of BL equations 
acquires the following form [10, 15]: 
 
     U´´ + fU´ + β(S + 1 – U2) = 0               (15) 
 
       f´ = U´                   (16) 
 
      S´´ + σfS´ = 0                  (17) 
 
where the Faulkner-Scan constant [14] β = (1 + j)-1 characterizes the pressure gradient in 
inviscid flow; j = 0 or 1 in plane and axisymmetric cases correspondingly; and σ = 0.72 is 
the Prandtl number. 
 
Boundary conditions are the following: 
 
 On the body surface (Y = 0) considering the gas blowing: 
 
      f = fw = const, U´ = 0, S = Sw              (18) 
 

On the external boundary of the layer (Y → ∞): 
 
      U = 1, S = 0                  (19) 
 
In Eq. (18) the parameter fw characterizes the mass flow rate of the blowing gas. Special 
box-schemes with uniform convergence [16] or exponential schemes [10, 12] should be 
used in order to solve the problem at large  │fw│. The principal advantages of the two-
point box-schemes are: 1) any type of boundary conditions "estimated" accurately [11]; 
2) algorithmic changes of the grid-cell are simple [17]; and 3) fluxes of the flow 
parameters are calculated without additional procedure [11], and the approximation error 
of the fluxes is the same as that of other terms of the equations. The two-point 
exponential box-scheme developed [10] has the second order of uniform convergence. 
The scheme and its regularization algorithm [11] have been used for the numerical 
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solution of Eqs. (15)-(19) under the conditions of moderate and intensive blowing from 
the thermally isolated body surface (Sw = 0). The profiles of the tangential component of 
the velocity U and its derivative U´ along the normal at the stagnation point on the 
surface of the axisymmetrical blunt body (β = 0.5) are shown in Fig. 3 for various 
blowing parameters (fw = 0, –2.5, –10, –25). The presence of the blowing flow 
significantly changes the flow structure. As the rate of blowing increases, the boundary 
layer becomes thicker, and the friction on the body surface decreases. 
 

  
a) Function U 

 
b) Function U´ 

Figure 3. Functions U and U´ across the boundary layer for various blowing factors. 
 
4. Exploring Algorithms for Uniform Calculations of Flows under Various States 
 
The purpose of the fourth case study was to analyze heat-transfer processes at the 
catalytic materials of the shock-tube end after shock wave refraction in terms of the 
model of the nonsteady-state nonequilibrium thermal boundary layer [18]. The major 
challenge was to develop the algorithm that could correctly and uniformly calculate flow 
parameters under all possible states (chemically “frozen”, nonequilibrium, and 
equilibrium ones) right behind the moving reflected shock wave. The types of governing 
differential equations are significantly different in these three cases, and the algorithm 
should automatically “adapt” to these changes across the flow. 
 
4.1. Gas Flow behind the Incident Shock Wave 
 
Students considered the simplest model [18, 19] of the one-dimensional inviscid 
dissociating gas flow behind the incident shock wave, which propagated in an ideal air 
with parameters of pressure p1 = 1 and 100 Pa, and temperature T1 = 295 K at constant 
velocity US = 5 km/s. The system of chemical reactions occurring in the five-component 
mixture and reaction constants used in the present study was described in [20].  
 
The algorithm of calculation of the parameters behind the incident and reflected shock 
waves was described in [18] in detail. The system of algebraic-differential equations [19] 
was solved at each point of the flow field behind the incident shock wave under the 
assumption that air is not dissociated on the shock wave front. A modified Newton’s 
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method [21] with optimal choice of iteration step was used for numerical solution of the 
equations. The flow parameters behind the incident shock wave are shown in Fig. 4 (left). 
The solutions obtained for temperature and pressure are typical for dissociating gas flows 
with nonequilibrium relaxation [19, 22, 23]. For small time interval (t ≈ 10−8 sec) the gas 
state is frozen [19], while at large distances from the shock wave (at t ≥ 10−5 sec and p1 = 
100 Pa) the flow parameters tend to their limiting equilibrium values [18]. With decrease 
in initial pressure up to p1 = 1 Pa the equilibrium state is reached at significantly 
distances, while at t < 10−5 sec the flow parameters differ little from frozen. 
 

 
Figure 4. Temperature T2 and pressure p2 behind the incident shock at distances from the 
wave front (left), and velocity of the reflected shock wave UR as a function of time (right) 
at various initial pressure parameters: p1 = 1 Pa (squares) and p1 = 100 Pa (triangles). 
 
4.2. Gas Flow behind the Reflected Shock Wave 
 
The reflected shock is propagated in the disturbed field after the incident shock [23]. The 
velocity of the reflected shock wave UR as a function of time, for two cases of pressure p1 
= 1 and 100 Pa, is plotted in Fig. 4 (right) (squares and triangles, correspondingly). The 
decrease of values UR indicates the nonequilibrium type of chemical reactions behind the 
incident shock wave [23]. The magnitude of pressure p1 defines the time required for 
attainment of the steady-state distribution. This time is less by approximately a factor of 
100 for p1 = 100 Pa. Therefore, the parameter UR can be used for experimental 
verification of nonequilibrium states in the areas behind the shock and near the tube end.  
 
Using the computational technique [19], the distribution of temperature T3 and pressure 
p3 behind the reflected shock wave was calculated. The computational results are shown 
in Fig. 5 (left) at the same cases of the initial pressure p1. The distribution of temperature 
T3 [see Fig. 5 (left)] is similar to the distribution of UR and it can be used for the 
identification of the type of chemical processes behind the shocks [18, 23]. Figure 5 (left) 
presents also the computational results for pressure p3(t) behind the reflected shock. This 
parameter is the most conservative one. Nevertheless, for the large value of initial 
pressure p1 = 100 Pa (triangles) the significant increase of the values p3 is observed after 
the short initial time-interval of decreasing. This is a result of the influence of different 
types of chemical processes behind the incident wave with initial pressure p1 [19, 23].  
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Figure 5. Temperature T3(t) and pressure p3(t) behind the reflected shock wave at various 
initial pressure parameters: p1 = 1 Pa (squares) and p1 = 100 Pa (triangles) (left), and 
mass fractions αi in air behind the reflected shock wave at p1 = 100 Pa (right). 
 
At p1 = 100 Pa, the flow behind the reflected shock is close to a state of local 
thermodynamic equilibrium [18], while at p1 = 1 Pa, the flow is significantly 
nonequilibrium [19, 23]. The function p3(t) can be used for the prediction of pressure in 
the thermal viscous layer near the tube end, and it correlates with the value of pressure 
pw(t) at the tube end. Additional important information is the distribution of air 
components αi behind the reflected shock wave shown in Fig. 5 (right).  
 
5. Numerical Modeling of Strange Attractors 
 
The course topics cover mathematical foundations of evolution of dynamic systems that 
could be described in terms of strange attractors. The case studies examine numerical 
modeling of chaotic dynamic systems [24] (turbulence, weather forecast, and economic 
system development). They were introduced through classical examples of bifurcations 
of systems modeling equilibrium in chemical reactions, socio-economy (Rössler 
attractor) and atmospheric dynamics (Lorenz attractor) [25]. 
 
The Lorenz attractor was first studied by E. N. Lorenz in [25]. It was derived from a 
simplified model of convection in the Earth’s atmosphere. The system is most commonly 
expressed as the following three coupled non-linear differential equations:  
 

    dx / dt = a (y - x)         (20) 
dy / dt = x (b - z) – y        (21) 
    dz / dt = xy - c z         (22) 

 
Here (x, y, z) are the Cartesian coordinates, “t” is the time variable, "a" is the Prandtl 
number, "b" is the Rayleigh number, and “c” is the system parameter. The series does not 
form limit cycles nor does it ever reach a steady state (see Fig. 6). Instead, it is an 
example of deterministic chaos. As with other chaotic systems, the Lorenz system is 
sensitive to the initial conditions: two initial states no matter how close will diverge. 
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The general assumption is that a, b, c > 0; a = 10, and c is varied [26]. The system 
exhibits chaotic behavior for b = 28, but displays knotted periodic orbits for other values 
of b. A saddle-node bifurcation occurs at c(b – 1) = 0. When a ≠ 0 and c(b – 1) ≥ 0, the 
equations generate three critical points. The critical points at (0,0,0) correspond to no 
convection, and the critical points at (±[c(b – 1)]0.5, ±[c(b – 1)]0.5, b – 1) correspond to 
steady convection. This pair is stable only if b < a(a + c + 3)/(a – c – 1). When a = 10, b 
= 28, c = 8/3, the Lorenz system has chaotic solutions, but not all solutions are chaotic.  
 

 

 

 

A) b=12, a=10, c=8/3 B) b=16, a=10, c=8/3 C) b=28, a=10, c=8/3 
 

Figure 6. Solutions of the Lorenz system (Eqs. 20-22) for different values of b. 
 
The Matlab calculations show the system evolution for different values of b (see Fig. 6). 
For small values of b, the system is stable and evolves to one of two fixed point attrac-
tors. When b is larger than 24.28, the fixed points become repulsors and the trajectory is 
repelled by them in a very complex way, evolving without ever crossing itself [26]. 
 

   

a) Time t=1 b) Time t=2 c) Time t=3 
 

Figure 7. Sensitive dependence of the solution on initial condition at a=10, b=28, c=8/3. 
 
Three time segments (received with the Java animation [27] and shown in Fig. 7 [26]) 
illustrate the 3-D evolution of two trajectories (one in blue and the other in yellow) in the 
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Lorenz attractor starting at two initial points that differ only by 10-5 in the x-coordinate. 
Initially, the two trajectories seem coincident (only the yellow one can be seen, as it is 
drawn over the blue one) but, after some time, the divergence is obvious [26]. 
 
6. Concluding Remarks on Students’ Involvement 
After in-class discussions of case studies, each student continued working on a selected 
case analyzing mathematical models, creating computer codes (in MATLAB, C/C++, 
Java, or FORTRAN), running them at various parameters, comparing computations with 
experimental data, and presenting the findings to classmates. In the course evaluations, 
students stated that they became deeply engaged in course activities through examining 
the challenging problems with the advanced math concepts and numerical algorithms. 
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