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I.   Introduction 
 
As teachers and researchers in mathematics we often need to solve equations. The linear 
and quadratic equations are easy. There are formulas for the cubic and quartic equations, 
though less familiar. There are no general methods to solve the quintic and other higher 
order equations. It would be good to have some readily solution to the solvable quintics,  if 
we need them. The cyclotomic equation provides just that. In the field of complex 
numbers, the cyclotomic equation is: 
   
(1)           = 0 

 
where n is an integer, whose solutions are given by DeMoivre’s theorem: 
 
(2)              ⁄     (    )       (

   
 )                 

 
These are known as the roots of unity. In the complex plane, these roots of unity divide the 
arc of the unit circle into n segments of equal length, starting from (1, 0). 
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In the figure, the eighth roots of unity are shown, for      
   
The more general equation is: 
 
(3)            
 
and its zeros are:      
 
(4)        √         
 
with      as above, and a a real number.  
 
Since ancient times mathematicians have been concerned with solving polynomial 
equations. The solutions were written in terms of the coefficients of the equation and using 
only the operations of addition, subtraction, multiplication, division, and the extraction of 
roots; this is called the solution by radicals.  The quadratic formula was known essentially    
to the Babylonians by 2000 BC; the cubic and quartic formulas were discovered during the 
Renaissance by Italian mathematicians. But there was no formula for the quintic equation. 
It was only to be found 300 years later that there cannot be a solution by radicals to the 
general quintic equation (Galois theory), although some specials forms of the quintic do 
have solutions. The cyclotomic equation is the simplest such solution. 
 
II.   Solutions to the cyclotomic equation 
 
A.   De Moivre 
 
DeMoivre (1706) obtained solutions for small prime     Since 1 is a solution of (1), we may 
divide        by       to get: 
(5)                     
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Thus, for        the solution is      and for        the solution is (    )     For  
     he had a clever substitution. First, divide by      (where the exponent is       
 )  and change variables to            Thus, Eq. (5) becomes: 
       
(6)                                           

              ,    
 
a quadratic whose solutions are    (   √ )     and therefore, 
 
(7)            (√    √     √ )      and        ( √    √     √ )     
 
The next prime,        yields for             the cubic equation 
 
(8)                    
 
which can be solved by radicals;  the 7th roots of unity can therefore be expressed by 
radicals. However, for the next prime,         DeMoivre’s trick yields an equation of 
degree 5,  
(9)                          
 
for which no general formula by radicals is known. Solving this equation was one of the 
greatest achievements of Vandermonde. 
 
B.      Vandermonde 
 
DeMoivre had shown that the problem of determining radical expressions for the roots of 
unity can be reduced to the solution by radicals of the alternate cyclotomic equation:  
 
(10)    ( )                      
 
for     prime. And the substitution    (     )    converts the equation above into an 
equation of degree  (   )    Moreover, since the roots of     are the complex numbers 
 
             for          (   )    
 
it follows that the roots of the equation in  y  are the values 
   
(11)      (      )    for           (   )    
 
Vandermonde made use of these results to obtain the radical solutions for         Eq. (9). 
In fact, he used the equivalent substitution     (     )   which yields the equation: 
 
(12)                        
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  Vandermonde then chose the roots to be: 
 
(13)                              
                                         

   
    

 
He noted that the trigonometric identity 
 
(14)               (   )      (   ) 
    
can be used to obtain relations between the roots. In fact, he used the relations between the 
roots to express the 11th roots of unity in terms of radicals, and leaves the problem there. 
Thus, the solution of the cyclotomic equation for prime n up to 11 was known by 1771. The 
problem stayed there until 1796 when Gauss gave the full solution.  
 
[Some authors lament the fact that although Vandermonde made two brilliant discoveries 
on the solution of equations, he did not quite understand the significance of his discoveries: 
 

i. The existence of relations between the roots, which can be used to reduce to 
degree 1 each polynomial expression in the roots; 

ii. The existence of a cyclic permutation of the roots which preserves the 
relations between them. 

 
The existence of a cyclic permutation which preserves the relation between the roots is a 
remarkable, though mysterious, property of cyclotomic equations, which should have 
awakened Vandermonde’s curiosity. If he investigated this property carefully, he could 
have developed the theory of cyclotomy about thirty years before Gauss. Moreover, 
Vandermonde had pinpointed the very basic idea of Galois theory: in order to determine 
the ‘structure’ of an equation, deciding eventually if it is solvable by radicals, one has to 
look at the permutation of the roots; we only need to consider those permutations which 
preserve the relations between the roots.  Vandermonde had missed out at two very 
important opportunities of great achievements.]  
 
C.   Gauss 
  
The contributions of Gauss to the theory of equations – namely, the fundamental theorem 
of algebra and the solution of cyclotomic equations, in particular – are among his 
outstanding achievements, and also his earliest (1796). Gauss’ results on the cyclotomic 
equations show how to complete Vandermonde’s methods for any higher prime n. They 
were a thorough description of the reduction of the cyclotomic equation of prime index to 
equations of smaller degree. He showed that the solution of    ( )     can be reduced to 
the solution of equations of degree equal to the prime factors of       In particular, the 
17th roots of unity can be determined by solving successively four quadratic equations, 
since           As an application of this result, he showed that the regular polygon of 
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17 sides can be constructed by ruler and compass, a result he derived in his teens and is said 
to have determined his choice of vocation. 
 
Gauss published his definitive account of the solution of cyclotomic equations as the final 
section of his treatise on number theory, Disquisitiones Arithmeticae (1801). His principal 
results were: (i) that the cyclotomic equation of prime index n is irreducible, a key result; 
(ii) that the cyclotomic equation of index      is reducible to equations of degree equal to 
the prime factors of       and (iii) that the cyclotomic equation is solvable by radicals. In 
fact, since any integer can be shown to be the product of primes, the cyclotomic equation of 
any degree is now completely solved. 
 
(i) The irreducibility theorem may be stated thus: For n a prime, The cyclotomic 
polynomial   ( ) is irreducible (not factorable) over the field of rational numbers. Over 
the years, the proof has been generalized and simplified by other mathematicians, among 
them Eisenstein, whose theorem is now:  Let  

 
                       

 
be a monic polynomial (i.e., the leading coefficient is 1) with integer coefficients      If 
there is a prime p which divides                but such that      does not divide      
then P is irreducible over the rationals. The importance of Gauss’ irreducibility theorem is 
that it allows us to reduce every rational expression in the  nth  roots of unity to polynomials 
of lower degree. 
 
(ii)  The cyclotomic polynomial      ( )   a prime,  may be decomposed into 
polynomials of lower degree which are the prime factors of       This decomposition 
essentially simplifies the solution of the original equation for then the lower factors may be 
successively decomposed themselves into yet lower factors. Thus, a primitive 17th root of 
unity (an  nth  root other than 1) can be determined by solving successively four quadratic 
equations (      )  This is the key fact which leads to the construction of the regular 
polygon of 17 sides by straightedge and compass alone. As a corollary, Wantzel published 
a result in 1837 (which was undoubtedly known to Gauss in 1796) that: The regular 
polygon of  n  sides can be constructed with ruler and compass if  n  is a product of distinct 
Fermat primes and a power of 2. (A Fermat prime is an integer of the form         for 
some integer n. These are indeed primes for                but for        Euler 
showed in 1732 that it is                 and since then it has been shown that there 
are no other Fermat primes for         ) 
 
(iii)  Gauss’ final result is that the cyclotomic equation    ( )     is solvable by radicals 
for every prime  n.  In fact, in full generality, for every integer  n  the  nth  roots of unity can 
be expressed in terms of radicals. Taking the modern viewpoint, the Galois group of the 
cyclotomic equation of index p,      ( )     over the rationals, is a cyclic group of order 
      We now know that the general cyclic group is a solvable group. Thus, the 
cyclotomic equation is solvable by radicals. 
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III.  Significance 
 
The  importance of the cyclotomic equation in the history of mathematics is that it provided 
us with the simplest example of a closed solution of the quintic equation by radicals. 
Although there are no formulas to solve a general quintic, the cyclotomic equation is an 
instance of a simple closed solution. There are other forms of the quintic equation that are 
solvable, but the cyclotomic equation is the simplest of these. In fact, since it is solvable for 
any integer n, it gave us a closed solution for a polynomial equation of any degree n.  In 
addition, in Euclid’s time, all known constructions of the regular polygon were restricted to 
the triangle, square, pentagon, and their multiples. Nothing was added to these for 2000 
years. Gauss showed that there is a regular n-gon for every n  a product of distinct Fermat 
primes and a power of 2. In particular, he demonstrated the construction of the regular 
heptadecagon  (    ). 
  
As a summary of results: (i) the cyclotomic equation is readilty solved by DeMoivre’s 
formula, which divides the arc of the unit circle into n equal parts; but these solutions are 
expressed in terms of trigonometric or complex exponential functions; (ii) the goal, as in 
classical algebra, is to write the solutions in terms of radicals; this was done by DeMoivre 
and Vandermonde, for small values of the degree n, and by Gauss, for all values n; (iii) 
Gauss also showed that the construction of regular polygons by straightedge and compass 
was related to the solution of the cylotomic equation; thus, he showed that the construction 
can be effected whenever the number of sides is a product of distinct Fermat primes and a 
power of 2; (iv) in modern times, Galois theory shows us why the cyclotomic equation is 
solvable by radicals for any integer n.    
  
V. Conclusions 
 
The roots of the cyclotomic equation (the roots of unity) can readily be found from 
DeMoivre’s theorem, which solutions divide the arc of the unit circle into n equal parts. By 
a suitable transformation, the roots can be expressed in terms of radicals, which can be 
done for n a prime, and also for any integer n. The cyclotomic equation is significant in that 
it gave us the simplest closed-form solution to the quintic equation, which is an insolvable 
equation in terms of  radicals (and other higher-order equations as well). Solving the 
cyclotomic equation also solved the classical problem of constructing the regular polygon 
by straightedge and compass. The construction is feasible whenever the number of sides is 
a product of distinct Fermat primes and a power of 2.   
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