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Introduction

The highlight of the second semester biocalculus course at Benedictine University is
the Extended Course Project. This project requires students to read a research pa-
per in mathematical biology, implement the model in the paper using computational
software, write an expository paper on the model and its implementation, and give
an external presentation on their work. The mathematical models involved in these
projects may involve systems of differential equations, systems of difference equations,
and impulsive differential equations. The mathematical content involves the study
of the dynamics of these models including finding equilibria, studying stability, and
bifurcation behavior. The project exemplifies the primary goals of the course to in-
tegrate mathematical, biological, and computational content and preparing students
to engage in future undergraduate research projects.

To show how MATLAB was used in the projects, we highlight a model for a two
stage-structured population models with birth pulses due to Tang and Chen (Tang
and Chen, 2002), upon which a student based her project. This model uses impulsive
differentiation equations. For the project, the dynamics of the model is analyzed
using underlying discrete dynamical systems induced by the impulsive differential
equations, called the stroboscopic map. The model exhibits interesting and complex
dynamical behavior, which we illustrate with a bifurcation diagram. In this paper,
we provide the MATLAB code needed to plot numerical solutions and bifurcation
diagrams for this model.

Background

Before describing the particular project, we provide some background of the environ-
ment in which this project is assigned. Benedictine University offers a two-semester
biocalculus sequence. This sequence is designed for students majoring in the life and
health sciences. For the first semester, the students have a 4 credit hour lecture
course and a 1 credit hour lab course with students in the traditional calculus course
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to learn how to use Maple. The lecture course focuses on biological applications,
and the mathematics covers the standard material of a typical first semester calculus
course with additional material on basic difference equations and models involving
discrete dynamics systems.

In the second course, which is 4 credit hour experience, the students learn basic
integration techniques followed by mathematics that will help them analyze biologi-
cal models given by either continuous or discrete dynamical systems. Student learn
the basic dynamics of single ordinary differential equations with some attention to
bifurcation behavior. The focus then turns to developing the matrix algebra and
multivariable calculus needed to analyze dynamical systems involving systems of or-
dinary differential equations and systems of difference equations. Students work on
a series of eight to ten small application-oriented laboratory projects using Excel,
Maple, and MATLAB. It is in this course that the Extended Project is assigned. The
basic requirements of the Extended Project are to read a journal article in mathemat-
ical biology, implement the articles’s model using one of the computational software
packages introduced in class, and then give both oral and written presentations. Stu-
dents usually present their work in student sessions at local and regional professional
meetings.

We recall the construct of impulsive differential equations that is addressed in this
paper. An implicit differential equation is given by a system of the form:

dx

dt
= f(t,x), t 6= mT, m ∈ Z

∆x = Ax, t = mT, m ∈ Z,

where x : R → Rn, A is an n × n matrix, and T is the time period.

What this system describes is continuous behavior over the intervals (mT, (m + 1)T ]
followed by an instantaneous pulse at time (m + 1)T , where m is an integer. It is
necessary to characterize the behavior a solution right before a pulse and right after
the pulse. We use the notation x(mT−) to be the value of solution just before the
pulse at time t = mT and x(mT +) to be the value of the solution immediately after
the pulse at time t = mT occurs. Using this notation, we can express ∆x as:

∆x = x(mT +) − x(mT−)

Impulsive differentiation can used to model a wide range of biological phenomena.
Some of these include periodic vaccination or drug administration, birth pulses in
a species in which births occur on a discrete, periodic schedule, and augmentation
in pest management, for which more of a predatory species is added periodically.
Impulsive differential equations combine features of both continuous and discrete
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systems. By “sampling” solutions immediately after the pulse is applied, we obtain
a system of difference equations

x((m + 1)T +) = g(x(mT +)).

This system of difference equations is called the stroboscopic map. Equilibria of the
stroboscopic map correspond to cycles (periodic solutions) in the system.Equilibria
of the stroboscopic map correspond to cycles (periodic solutions) in the system.

Systems given by impulsive differential equations fit nicely into the second semester
biocalculus course. Concepts previously studied in class that arise the study of the
impulsive differential equations include linear and nonlinear systems of differential
equations, systems of difference equations, linearization and stability, and the basics
of bifurcation theory. The project enables the students to see these concepts in prac-
tice and use the software to help with analysis of the dynamics of the systems.

Using MATLAB for Impulsive Differential Equations

To illustrate the MATLAB implementation, we focus on a simple impulsive model
due to Tang and Chen (Tang and Chen, 2002). This is an age-structured model with
birth pulses. We use x and y to represent the population densities of the immature
and mature populations of the species, respectively. In this model, the death rate
constant is d, and the maturity rate constant is δ. The meaning of the constant δ

is that the mean length of the time of an individual spent in the immature class is
1

δ
. The expression be−(x(m−)+y(m−)) is the birth rate function, which is the average

number of individuals born to an individual in the mature class, where b is a growth
rate parameter. The equations for the model are given by:

dx

dt
= −dx(t)− δx(t)

dy

dt
= δx(t)− dy(t), t ∈ (m, m + 1], m ∈ Z

x(m+) = x(m−) + be−(x(m−)+y(m−))y(m−), m ∈ Z

The first MATLAB file we need is the file sys1.m, which gives the differential equa-
tions. Notice that this file does not incorporate the pulse behavior. We incorporate
this when we use a numerical solving routine. The code for this file is given below.

%sys1

function ydot=sys1(t,x)

global d delta;

ydot(1)= -d*x(1)-delta*x(1);
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ydot(2)=delta*x(1)-d*x(2);

ydot=[ydot(1);ydot(2)];

The next file is the numerical solving routine that we called ode15sp.m. This file
uses the MATLAB stiff ordinary differential equation solver ode15 for each interval
and then applies the pulse behavior. As given here, the pulse is not applied after the
model is numerically solved over the final interval. This model returns the numeri-
cally numerical solution to the differential equation, y, along with the times values,
given by t, at which the systems is evaluated. As a byproduct, we store the solution
to the corresponding stroboscopic map in the global variable z.

%ode15sp

function [t,y]=ode15sp(ti,tf,y10, y20,b,pulsestep)

global d delta z;

clear y;clear z;y(1,1)=y10; y(1,2)=y20;

rep=ceil((tf-ti)/pulsestep); clear s ytemp;

z= zeros(rep,2);z(1,1)=y10;z(1,2)=y20;

%rep is the number of intervals of length puslestep that over which the

%system is evaluated.

%evalpts is the number of points at which times the systems is

%evaluated over an interval

%the evaluation over the first interval

%z contains the points generated by the stroboscopic map.

[s,ytemp]=ode15s(’sys1’,[ti, ti+pulsestep],[y10, y20]);

[evalpts, cols]=size(ytemp);

for j=1:evalpts

t(j)=s(j);

y(j,1)=ytemp(j,1);

y(j,2)=ytemp(j,2);

end;

%the evaluation over the succeeding intervals

for k=1:rep-1

[sizey,cols]=size(y);

y1int=y(sizey,1)+ b*exp(-y(sizey,1) -y(sizey,2))*y(sizey,2);

y2int=y(sizey,2);

z(k+1,1)=y1int;z(k+1,2)=y2int;

clear s ytemp;

[s,ytemp]=ode15s(’sys1’,[ti+k*pulsestep,ti+(k+1)*pulsestep],[y1int,

y2int]);

[evalpts, cols]=size(ytemp);

for j=1:evalpts

t(sizey+j)=s(j);
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y(sizey+j,1)=ytemp(j,1);

y(sizey+j,2)=ytemp(j,2);

end;

end;

We are able to plots numerically generated solutions to the system. We do this with
the file solutionplot.m. This file plots the x and y population density times series
as well as the solution in the xy-phase plane. For example, we plot a solution with
d = 0.2, δ = 0.4, b = 100. Note that the time step between pulses is 1. Initial values
are chosen to be x0 = 1.5 and y0 = 4.24. In Figure 1, we see the plot of the x time
series, and we see the solution plot in the xy-phase plane in Figure 2. These figures
indicate that this solution illustrates periodic behavior.

%solutionplot

figure(1);clf(1);figure(2);clf(2);figure(3);clf(3);

global d delta z;

d=0.2;delta=0.4;

[t,y]=ode15sp(0,1000,1.5,4.24,100,1);

[sizey,cols]=size(y);

%plot of immature class x

figure(1);plot(t(12610:sizey),y(12610:sizey,1),’r-’);

xlabel(’t’);ylabel(’x(t)’);

%plot of immature class x

figure(2);plot(t,y(:,2),’b-’);xlabel(’t’);ylabel(’y(t)’);

%plot of solution in the xy-phase plane

figure(3);plot(y(12610:sizey,1),y(12610:sizey,2),’r-’);

xlabel(’x(t)’);ylabel(’y(t)’);

To better understand the complete picture of the dynamics of the system, it is often
helpful to analyze the bifurcation diagram of the stroboscopic map of the system.
Recall we generated the stroboscopic map using the file ode15sp and stored it in the
global variable z. Probably the easiest method for obtaining the stroboscopic map is
by embedding its generation in the numerical solving routine as we have done. This
method is particular useful when it is not possible to obtain manageable formula for
the stroboscopic map. For our example, there is a nice form for the stroboscopic map,
which is given by:

xm+1 = xme−(δ+d) + b[ym + xm(1 − e−δ)]e−d+e−d(xm+ym)

ym+1 = e−d(1 − e−δ)xm + e−dym,

where m is a nonnegative integer.
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Figure 1: The x times series for the solution with d = 0.2, δ = 0.4, b = 100 and initial
values x0 = 1.5 and y0 = 4.24

The code which generates the stroboscopic map and a bifurcation diagram is given in
the file bif.m. For this particular bifurcation diagram the sum xm + ym as b varies
from 500 to 1, 002, 000. Again, we use d = 0.2 and δ = 0.4. For each value of b, a
sequence of 1000 terms is generated, and then the final 200 terms are plotted in the
bifurcation diagram. We see initial periodic behavior for small values of b followed by
period doubling, chaotic behavior, and periodic windows appearing within the chaotic
areas. The dynamics of this system are indeed complex. The plot of the bifurcation
diagram is given in Figure 3.

%bif.m

figure(1);clf(1);

global d delta;

d = 0.2; delta = 0.4;

clear z;z=zeros(1000,2);

z(1,1)=1.5;z(1,2)=4.24;

Max=501; step=2000; interval=Max*step;

for n=1:Max

b=step*n;

for k=1:999

z(k+1,1)=z(k,1)*exp(-d - delta) + b*(z(k,2) +

z(k,1)*(1-exp(-delta)))*exp(-(d+ exp(-d)*(z(k,1)+z(k,2))));

z(k+1,2)=exp(-d)*(1-exp(-delta))*z(k,1)+exp(-d)*z(k,2);

end
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Figure 2: The solution plot in the xy-phase plane for the solution with d = 0.2,
δ = 0.4, b = 100 and initial values x0 = 1.5 and y0 = 4.24

plot(b*ones(200),z(801:1000,1)+z(801:1000,2),’.’,’MarkerSize’,10);

xlabel(’b’);ylabel(’x(n)+y(n)’);

hold on

z(1,1)=1.5;z(1,2)=4.24;

end
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Figure 3: The bifurcation diagram for d = 0.2 and δ = 0.4 as b varies from 2000 to
1,002,000
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