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Introduction 

Miller (2011) discussed how to use the free interactive algebra-geometry program 

Geogebra, to investigate a special property of cubic polynomials. The article 

demonstrated various ways to use Geogebra to illustrate the special property that given a 

cubic polynomial with three real zeros, a tangent drawn to the curve at the point at which 

the abscissa is the mean of two of those three zeros will intersect the horizontal axis at 

the other zero. This property was extended by Miller and Moseley (2012) to higher 

degree polynomials. We will use Geogebra to illustrate how this special property of cubic 

polynomials can be generalized to higher degree polynomials.  This will be done by first 

reviewing the cubic polynomial case through an applet, discussing and illustrating in 

Geogebra the cases for fourth and fifth degree polynomials along with derivations of 

formulas. The proof for the 4
th
 degree polynomial case, and the general proof for the nth 

degree polynomial with zeros  is shown in (Miller and Moseley, 2012).  

Cubic Polynomials 

Miller (2011) uses Geogebra to present a variety of ways to illustrate different examples 

of the special property for cubic polynomials. Instead of reiterating what is everything 

described about cubics in Miller (2011) and Miller and Moseley (2012), we will construct 

an applet in Geogebra to illustrate the case where all the zeros of the cubic polynomial 

are real numbers and then state the proof.  First go to www.geogebra.org and click on the 

download tab that appears between “About” and “Help” near the upper right corner. 

Download a free version of Geogebra by clicking on the Applet Start button.  Now follow 

the steps below and refer to Miller (2011) under the subheading “Adding More Visual 

Proof” for more detailed instructions.  
 

1. Insert three sliders by clicking on the slider menu and clicking in the graphing 

window three separate times (see figure 1 below). Label the sliders a, b, and c with 

minimum -10, maximum 10, and increment of 0.01. 

 
Figure 1: Slider Button 

 

2. In the input box (bottom of Geogebra) type in  
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f(x) = (x-a)*(x-b)*(x-c). 
 

Your screen should look like figure 2 below. 
 

 
Figure 2: General Cubic with all zeros at 1. 

 

3. Adjust  to be 2, b to be 1, and c to be -1. Your screen should look similar to Figure 

3 below. 

 
Figure 3: Cubic with Specified Sliders 

 

4. Now we need to capture the x-intercepts. Start typing in roots and when the input box 

gives you a drop down menu of different commands with root in them, select the 

command Roots[ <Function>, <Start x-Value>, <End x-Value> ] and insert f(x) for 

<Function>, -10 for <Start x-value>, 10 for <End x-Value>, and Enter. You should 

get points A, B, and C for the x-intercepts of the polynomial. Your screen should look 

like figure 4 below. 

5. Input into the input bar, g(x) = Derivative[f(x)]. Click on the radio button next to g(x) 

in the algebra box (under the dependent objects) to hide it. 

6. Type in d = (a+b)/2  into the input box. Repeat by typing e=(a+c)/2 and h=(b+c)/2. 
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Figure 4: Cubic with Marked Zeros 

 

7. Now type in to the input box separately, y – f(d)=g(d)*(x-d), y – f(e)=g(e)*(x-e), and 

y – f(h)=g(h)*(x-h). Your screen should look similar to Figure 5 below. 

 
Figure 5: Cubic with Tangent Lines 

 

8. Polish up the screen by inserting color, line thickness, by doing the following: 
 

Right click on f(x) and go to object properties. Choose a color (I choose blue) and 

line thickness (under style) to be 4. Repeat for each tangent line and the sliders. 

Under object properties � basic, you can label f(x) and each tangent line by 

selecting the box for show label and clicking on the down arrow in the selection 

box and choosing name & value option. Your screen should look similar figure 6 

below. 
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Figure 6: Polished Version of the Cubic Polynomial with Sliders 

Notice that as you move the sliders to different values, the tangent line at the average of 

two of the zeros always has an x-intercept at the other zero. This shows all the different 

examples for real zeros (even in the trivial case when two or three of the zeros are the 

same), except when two of the zeros are complex conjugates. The proof below shows 

why this always works for cubic polynomials with zeros a, b, and c and can be found in 

(Miller and Moseley, 2012). Students believe that they can say something is true (proved) 

if they show some examples. Therefore it might be best to emphasize why the proof is 

necessary. 
 

Given any cubic polynomial, we can factor it by the fundamental theorem of algebra into 

the form ))()(()( cxbxaxkxf −−−= where ,,ba and c  are complex numbers (notice in 

the Geogebra applet, k = 1. One could insert another slider to incorporate the scaling 

factor k). Assume that ba ≠ . Otherwise the derivation is trivial when  ba =  or 

cba == . Evaluating the function at the average of a and b , we have  
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Evaluating the derivative at the average of a  and b , we have  
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So the tangent line is  
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Substituting y = 0 and solving for x we have  
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This last equation simplifies to cx −=0  and so cx = , the other zero. Since there was no 

preference why we picked the zeros a and b to average, we would obtain the same result 

if we chose any two distinct zeros. 

 

We see an awesome property of cubic polynomials, but we are left with a feeling that 

there is more to this that what meets the eye. Is there some hidden explanation for why it 

works? Does the tangent line to an nth degree polynomial at the average of all but one of 

the zeros always have an x-intercept at the other zero, for ? If not, is there another 

formula in terms of all but one of the zeros, besides averaging, that would yield the same 

result? Although we do not answer these questions explicitly in this article, the reader can 

reference (Miller and Moseley, 2012) to get more details of the formulas, underlying 

property from Calculus, and general proofs. We will concentrate on building Geogebra 

applets with sliders to illustrate how the cubic property can be generalized to higher 

degree polynomials and use the formulas in the applets.    
 

Fourth Degree Polynomial Example 

Now we will look at building examples of fourth and fifth degree polynomials. Let , b, 

c, and d be the real zeros of the fourth degree polynomials (zeros could be complex, but 

can not be visualized in Geogebra). The formula for fourth degree polynomials f(x) is 

derived in (Miller and Moseley, 2012). Given three of the zeros of f(x), say , b, and c, 

and the solutions,  and , of the following quadratic equation 

0)(23 2 =+++++− acbcabxcbax  , the tangent line at   and , 

intersects the x-axis at the other zero d. To illustrate this we will build a Geogebra applet 

with the following steps. 
 

1. Insert four sliders by clicking on the slider menu and labeling them a, b, c, and d with 

minimum -10, maxium 10, and increment of 0.01. 
 

2. In the input box (bottom of Geogebra) type in f(x) = (x-a)*(x-b)*(x-c)*(x-d). 
 

      Your screen should look figure 7 below. 

3. Adjust a to be -2, b to be -1, c to be 0, and d to be 1. Your screen should look like 

figure 8 below. 
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4. Now we need to capture the x-intercepts. Start typing in roots and when the input box 

gives you a drop down menu of different commands with root in them, select the 

command Roots[ <Function>, <Start x-Value>, <End x-Value> ] and insert f(x) for 

<Function>, -10 for <Start x-value>, 10 for <End x-Value>, and Enter. You should 

get points A, B, C, and D for the x-intercepts of the polynomial. Your screen should 

look like figure 9 below. 

5. Input into the input bar, g(x) = Derivative[f(x)]. Click on radio button next to g(x) in 

the algebra box (under the dependent objects) to hide it. 

6. Type in  e=(a+b+c+sqrt(a^2+b^2+c^2-(ab+ac+bc)))/3 and   

 h=(a+b+c-sqrt(a^2+b^2+c^2-(ab+ac+bc)))/3 into the input box. 

7. Now type in y-f(e)=g(e)*(x-e) to get the tangent line at e that has an x-intercept at d. 

Repeat for tangent line at h by inputing y-f(h))=g(h)*(x-h).Your screen should look 

like figure 10 below. 

8. Polish up the screen by inserting color, and line thickness (see figure 11). 
 

 
FIGURE 7: Generalized 4

th
 degree polynomial with sliders set at 1 

 

       
FIGURE 8: Generalized 4

th
 degree polynomial with sliders for the zeros. 

 

 
FIGURE 9: Generalized 4

th
 degree with zeros labeled A,B, C, and D 
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           FIGURE 10: Generalized 4

th
 degree polynomial w/ tangent lines that intersect at D 

 

            
FIGURE 11: Polished Up Version of 4

th
 degree polynomial  

 

It is to note that we are only showing the tangent lines that intersect at d. There are six 

more tangents lines, two that have x-intercepts at a, two at b, and two at c. The x-values 

of the point of tangency can be calculated by a formula similar to the formula in 6 above 

(the formula would be in terms of b,c,d, and e for the tangent lines that intersect the 

horizontal axis at a). If you would construct all the tangent lines then you would get the 

follow view iin Geogebra (see figure 12). 

  

Fifth Degree Polynomial Example 

Let , b, c, d, and e be the real zeros of the fifth degree polynomial f(x). The formula for 

f(x) is derived in (Miller and Moseley, 2012). Given four of the zeros of f(x), say , b, c, 

and d, the solutions of the cubic equation   

 
say , , and  the tangent line at   and , and  intersects 

the x-axis at the other zero e. To illustrate this we will build a Geogebra applet with the 

following steps. 
 

1. Input five sliders and label them a, b, c, d, and e. Select Min to be -10, Max to be 10, 

and Increment to be 0.001. 
 

2. Input into the Input box f(x) = (x-a)*(x-b)*(x-c)*(x-d)*(x-e) and slide the sliders so 

that a is -2, b is -1, c is 0, d is 1, and e is 2. 
 

3. Type in Roots[ f(x), -10, 10 ]. Your screen should look similar to figure 13 below. 
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4. Now we want to find the solutions to the (cubic) equation we get from the proof for 

higher degree polynomials. In (Miller and Moseley, 2012) we see that for higher 

degree polynomials we have  
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      where  and  are four of the five zeros of the fifth degree polynomial. 
 

Expanding this out we have 

 

Let  and  (parameters corresponding to the parameters in 

the applet). 
 

                
Figure 12: Quartic showing all tangent lines. 

 

     
FIGURE 13: 5

th
 degree polynomial with sliders 

 

To solve this we will type in the input box the two commands 
 

 

and Roots[ m(x), -10, 10 ]. 
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The roots are the three points where the tangent line has an x-intercept at the other zero e. 

Your screen should look similar to figure 14 below (where the line type (under object 

properties that you can get to by right clicking on m(x)) was changed to dotted). 
 

5. To find the zeros of m(x), type in Root[m(x)].You should see the points F, G, and H 

appear on the graph and in the algebra box.  

6. These are the three points where the tangent line (at these points) have x-intercepts at 

e. To see this we first must obtain the x-coordinates of F, G, and H by typing x(F), 

x(G), and x(H). These will appear in the algebra window as g, h, and I (since f was 

used for the function).  

7. Type j(x)=Derivative[f(x)] and hide it. 
 

 
Figure 14: 5

th
 degree polynomial with a dotted derivative 

 

8. Now type y-f(g)=j(g)*(x-g), y-f(h)=j(h)*(x-h), and y-f(i)=j(i)*(x-i). 
 

9. Now polish things up by adding color, line thickness and labeling. Your screen 

should be similar to figure 15. 
 

 
FIGURE 15: Polished up Version 5

th
 degree polynomial  
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Conclusion 

This article has shown how to use Geogebra to extend a mysterious property of cubic 

polynomials to more general properties for fourth and fifth degree polynomials. In 

general one can illustrate this for an nth degree polynomial to find the n-2 points on the 

x-axis in terms of n-1 zeros, that is given by the solutions to the equation below, where 

 are the n-1 zeros, 
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such that the tangent line to the nth degree polynomial at each 

 intersects the x-axis at the other zero . Here  for 

 are the zeros of the resulting n-2 degree polynomial derived from the 

formula above. See (Miller and Moseley, 2012) for more details and the underlying 

calculus concept behind the general property for polynomials. The reader should illustrate 

this for the 6
th
 degree polynomial and think about the proof before referencing the 

articles.  

This article shows some basic functions of Geogebra so that the reader can familiarize 

themselves with the program and is a good tool for students to discover some 

mathematics about polynomials in which they can see some specific examples and work 

on a more general proof via paper and pencil. 
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