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I.   Introduction 

 

We often need to solve equations as teachers and researchers in mathematics. The linear 

and quadratic equations are easy. There are formulas for the cubic and quartic equations, 

though less familiar. There are no general methods to solve the quintic and other higher 

order equations. When we deal with the cubic equation one surprising result is that often 

we have to express the roots of the equation in terms of complex numbers although the 

roots are real. For example, the equation 

   

– 4 = 0 

 

has all roots real, yet when we use the formula we get 

 

  . 

 

This root is really 4, for, as Bombelli noted in 1550, 

 

     and     ,    

 

and therefore   This is one example of the casus irreducibilis on 

solving the cubic equation with three real roots. 
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II.   Cardan’s formulas 

 

The quadratic equation    with real coefficients,  has the solutions 

 

(1)  . 

  

The discriminant 

      <  0,  two complex roots 

(2)  ∆   real double root 

 >  0,  two real roots. 

 

The (monic) cubic equation   can be reduced by the 

transformation     to the form  where 

 

(3)     

 

Using the abbreviations 

 

(4)      and , 

 

we get Cardans’ formulas (1545): 

 

   

(5)   

   
 

The complete solutions of  the cubic are: 

 

(6)   

 

The roots are characterized by the discriminant 

 

   

      
(7)      <  0,  one real, two complex roots 

      =  0,  multiple roots 

      >  0,  three real roots.   
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The third case, where  is the casus irreducibilis. We note in passing, from the 

Intermediate Value Theorem, that a cubic (odd degree) polynomial has at least one real 

root. 

  

III.  Examples 

 

Example 1.  The cubic    is already in reduced form, with  

  Its roots are given by Eq. (5), with: 

 

 , and ; 

 

 

 
 

 
 

 
 

Remark 1:  All the roots are real, but they are all expressed in terms of complex quantities. 

Remark 2:  In this example, we were able to simplify the cube roots of complex numbers in 

terms of other complex numbers: 

 

     and . 

 

This can be verified by expanding both sides to power 3. 

 

Example 2.  The reduced cubic    has    and so it 

has real roots. Then 

 

   and    
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The roots are  

   

  . 

 

Again, the roots are all expressed in terms of cube roots of complex numbers, yet all of 

them are real. Let us attempt to find 

 

    rational a and b to be determined. 

 

This leads to two simultaneous equations 

 

  , . 

 

Solving for b and , and eliminating, we find 

 

   
 

Setting   we have for x a cubic equation 

 

   
 

which, by the transformation  ,  becomes 

 

   
 

and, setting   becomes 

 

   
 

This is the same equation we started with before. Thus, we have not advanced in trying to 

find a and b, as we have found in the previous example.   

  
IV.   Significance   

 

We have seen in the examples that a cubic equation with real coefficients and has a positive 

discriminant has three real roots and yet are expressed in terms of complex quantities. This 

can be shown in general from Cardan’s formulas. For the case    A and B are shown 

to be complex numbers, which are conjugates of each other: 

  

  , 
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Thus, the roots, which are cube roots of these expressions, are complex. It is natural to ask 

whether it is possible to express the roots in terms of real radicals. For some special  cases, 

the answer is yes. For example, the cubic equation    has the roots  

,  which are readily seen because the equation factors as    In 

most cases, the answer is no whenever the polynomial is irreducible (i.e., not factorable). 

 

A theorem from Galois Theory: If a polynomial f with real roots is irreducible over a 

subfield  and has degree not a power of 2, then no root of f is expressible by real 

radicals over F. 

 

The significance of the cubic formula in the history of mathematics is twofold: (1) it forced 

mathematicians to take complex numbers and negative numbers seriously; and (2) it was 

the first instance of a result unknown to the ancients, showing that sixteenth-century man 

was the equal of his ancestors. 

  

Remark:  There is an alternate solution for the real roots of a cubic, other than Cardan’s 

formulas, which avoids the use of complex radicals, namely the trigonometric solution 

known to Viete (1593). From the trigonometric identity   

we can solve any cubic equation    with real coefficients and positive 

discriminant, which implies  by a simple change of variables: 

 

  ; 

 

and the roots are given by: 

 

   
 

From Example 2,  the roots of   are: 

 

   

   

   
  

V. Conclusion 

 

When we need to solve a cubic equation, there is a formula to find its roots, namely 

Cardan’s formula. The discriminant is used to tell the nature of the roots: whether real, 

imaginary, or multiple roots. When the roots are all real, Cardan’s formula gives the roots 
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in terms of complex radicals. Galois theory shows that if a polynomial is irreducible and 

with degree not a power of 2, then its real roots are not expressible in terms of real radicals. 

 

The roots of a cubic polynomial can always be expressed in closed form using Cardan’s 

formula. When the roots of an irreducible polynomial are real, the formula requires taking 

the roots of complex quantities. Galois theory shows that this could not be helped: the real 

roots of an irreducible polynomial that has degree not a power of 2 cannot be expressed in 

terms of real radicals. The real roots may be calculated with ease using trigonometry.   
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