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We generalize the counting of binary strings without certain substrings to the enumeration
of binary rectangles without particular sub-rectangles. We examine how Maple can be
used, at a student project level, to study the problem, generate examples, and motivate

theoretical results.
> restart; with(LinearAlgebra): with(StringTools):

To illustrate the computational method we shall use, we first find a recurrence relation for
the number of binary strings without a run of 3 consecutive O's or 1's. Let b(n) = the
number of length n binary strings without a run of 3 consecutive 0'sor 1's .

We use a matrix approach for generating values.

vO(n)
vl(n)
v2(n)
v3(n)
ending in 00 without a run of 3 zeros or ones; v1(n) = the number of length n strings
ending in 01 without a run of 3 zeros or ones; v2(n) = the number of length n strings
ending in 10 without a run of 3 zeros or ones; v3(n) = the number of length n strings
ending in 11 without a run of 3 zeros or ones. We then have, by considering each case in
turn:

Define the column vector v(n) = , where vO(n) = the number of length n strings

v0(n+1) = v2(n), since such a string of length n+1 would have to end in 10

v1l(n+1) =v0(n) + v2(n), since such a string of length n+1 would have to end in 001 or
101,

v2(n+1) =vl(n) + v3(n), since such a string of length n+1 would have to end in 010 or
110;

v3(n+1) = vl(n), since such a string of length n+1 would have to end in 011 .
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Hence we have the matrix relationship v(n+1) =B *v(n), where B =

—_—
@ @ =
—_— O
O O =
& =
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Note that v(2) = and thus v(n) = B "(n-2)

e N
Py . B jedt

Since b(n) =vO0(m)+ vl(n) +v2(n)+v3m)=[1 1 1 1]v(n) wethenhave, for n>1:
1

bm)=[111 1]B"n-2)

—

A quick route to a recurrence relation for b(n) is to note that the minimal polynomial for B
yields a linear recurrence relation that the sequence must satisfy.

> B := <<0,1,0,0>[<0,0,1,1>|<1,1,0,0>|<0,0,1,0>>;
0

_ O O

0
1
0

O O =

> MinimalPolynomial (B, x) ;

“1-2x-x"+x"
Hence we have the linear recurrence: b(n) =b(n - 2) + 2*b(n-3) +b(n-4), for n>5;
which, along with the initial conditions: [b(0)=1,b(1)=21], b(2)=4,b(3)=6,b(4) =
10, and b(5) = 16, determines the sequence.

Use of the minimal polynomial generates a linear recurrence, but not always one of lowest
order. Using Maple, we can interate the powers of the matrix B to hunt for a lower order
recurrence pattern.
> seq(<<1>|<1>|<1>|<1>>.B*i.<1,1,1,1>, i=0..10);

[ 4], 6],[10],[16],[26],[42],[68],[110],[178], [288], [466]
It appears that b(n) is determined by: b(n) =b(n-1) + b(n-2), for n>3; b(2) =4,b(3) =
6. :

It is easy to show that this recurrence relation holds in general using several basic facts
about linear homogeneous recurrence relations. Suppose a sequence, {a(n)}, satisfies a
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recurrence relation of order p <k. It can be shown by induction that: If the first k terms
of {a(n)} , after the initial conditions of R', satisfy R, then all of {a(n)} must satisfy R'.
It is also easy to show that any recursively defined sequence has a unique recurrence
relation of lowest order.

We have already noted that, since b(n) is produced by the powers of the matrix, B, its
minimal polynomial yields the 4th order linear, homogenous recurrence relation b(n) =
b(n - 2) +2*b(n - 3) + b(n - 4). Thus we need only note that the first 4 terms (past the first
two) computed above for b(n) , satisfy b(n) = b(n-1) + b(n-2) to establish that the entire
sequence satisfies this recurrence relation, which we have already seen by inspection.
With the recurrence relation in hand, we can look for a more theoretical justification for it.
In this case, arguments for the number of binary strings without a run of k consecutive
zeros or ones are well known. A nice introduction the problem and the literature on its
solution can be found in [ M. Schilling, The Longest Run of Heads, The College
Mathematics Journal, Vol. 21, No. 3 (1990) 196 - 207].

This matrix approach can be used to generate values and find the lowest order recurrence
relation for strings with various pattern avoidances over any g-ary alphabet. And rather
than use inspection to try to find the lowest order recurrence relation, we use Maple's
regression routines to test the best fitting recurrence relation, of successive orders, until
we find the lowest order that is a perfect fit. The following automates the entire algorithm
for any set, S, of forbidden substrings (all with the same length) using a few basic routines
and a Maple procedure.
> QaryRep := (n,q) -> Remove( IsPunctuation or IsSpace,
convert(
[seq(convert(n,base,q)[(nops(convert(n,base,q))+l)—i],
i=1l.. (nops (convert(n,base,q))))], string));

QaryRep = (n, q) — StringTools:-Remove( StringTools:-IsPunctuation or StringTools:-IsSpace,

convert( [ seq( convert(n, base, q) i =1 .. nops(convert(n, base, q)))],

nops(convert(n, base, g))+ 1 — i’
string))
> QaryRep (31, 3) ;
"1011"
> FullQaryRep := (n,k,q) -> cat( Fill( "O", k - length (
QaryRep(n,q)}), QaryRep(n,q) );

FullQaryRep :=
(n, k. q) — cat(StringTools:-Fill("0", k — length( QaryRep(#, ¢))), QaryRep(n, q))
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> FullQaryRep(100,6,5);
"000400"
> MinRecRelAnyBase := proc(S::set,q) description "Minimal
Recurrence Relation for enumerating g-ary strings over {0,
1, 2, ..., g-1} without any element of S as a substring";

slength := length(S[1]);

# "Populate the matrix M"

MatEnt := (i,j) -> "if  ( Drop(

FullQaryRep (j~1,slength~1,q),1l) = Take
FullQaryRep(i~1,slength~1,q),slength-2}) and not{ cat(
FullQaryRep (-1, slength~1,q),

FullQaryRep(i-1,slength-1,q) [slength-1]} in S )} , 1, 0): M
:= Matrix(qg” (slength-1) ,g” (slength-1) ,MatEnt) ;

# "Compute sequence terms from powers of M"

Temp := (Matrix(l,qg”(slength-1),1)) . M : Seque(0) :=
g’ (slength-1)

for i from 1 to max(g”®slength,12) do

Seque (i) := ( Temp . Matrix(g” (slength-1),1,1))[1,171:
Temp := Temp . M
end do:

# "Find recurrence relation fit, by first regressing
against a short vector of terms, and then checking against
the full list of terms.”

CheckFit := 1
for SegDepth from 1 while CheckFit<>0 do
NormResult := 1
- for TryOrder from 1 while NormResult<>0 do
MatEntZ2 := (i,j) -> Seque(TryOrder+i-j-1)
SolveMat := Matrix(SegDepth*slength,TryOrder, MatEnt2)
VectEnt := (i,j) -> Seque(TryOrder+i-1)
SolveVect := Matrix(SegDepth*slength,l, VectEnt):
Sel := LeastSquares (SolveMat, SolveVect) :
NormResult := Norm(SolveMat.Sol - SolveVect,2)
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end do:

FullMat := Matrix(g”(slength-1),TryOrder-1, MatEnt2)
FullVect := Matrix(g” (slength-1l),1, VectEnt):

CheckFit := Norm( FullMat.Sol - FullVect)
end do:

op([S,a(n) = (Transpose(<seg( a(n-i), i=l..(TryOrder-1))>)

.S0l} [1], [seg(Seque(k),k=0..10)11);

end proc:

Investigating and explaining various results for some small examples is useful. Each of

the following recurrence relations can be explained with a simple purely theoretical
argument.

> MinRecRelAnyBase ({"01","11"}, 2 });
{"o1","11"},a(n)=a(n-1),[2,2,2,2,2,2,2,2,2,2,2]
> MinRecRelAnyBase ({"10"}, 2 );
{"10"},a(n)=2a(n-1)-a(n—-2),[2,3,4,5,6,7,8,9,10,11,12]

> MinRecRelAnyBase({"00OO", "111", "011","110","101"}, 2 );
{"ooo", "011", "101", "110", "111"}, a(n)=a(n-1),[4,3,3,3,3,3,3,3, 3,3, 3]

> MinRecRelAnyBase ({"00", "O1", "10", "20", "21"},3);
{HOOH’ HOIH’ "10"’ HZOH, "2]” }’ a(n) = 2 a(n — 1)_ a(n _ 2),
[3,4,5,6,7,8,9,10,11,12,13]
> MinRecRelAnyBase ({ "10", "20", "21"},3);
{"10","20","21"},a(n)=3 a(n—-1)-3a(n-2)+a(n-13),
[3,6,10,15,21, 28, 36, 45, 55, 66, 78]
> MinRecRelAnyBase ({"200", "020", "0Q02", "011", "i01",
"110” ; 1!122!: ; I1212n ; 112211| } ,3) 2

{”002”, llOllH’ Il020’|> ”101", ”].10”, ”].22", Il200!|) ||212H, ||221H }, a(n) - 2 a(n . 1)

[9, 18,36, 72, 144, 288, 576, 1152, 2304, 4608, 9216]
We can use the generator to investigate strings without runs of repeated characters.
> MinRecRelAnyBase ({"000"},4); MinRecRelAnyBase ({"000",

"111"},4); MinRecRelAnyBase ({"000", "111", "222"} 4);
MinRecRelAnyBase ({"000", "111",6 "222", "333"} 4} ;
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{"000"},a(n)=3a(n-1)+3a(n-2)+3a(n-3),
[16, 63,249, 984, 3888, 15363, 60705, 239868, 947808, 3745143, 14798457
1"000","111"},a(n) =3 a(n—-1)+3a(n—-2)+2a(n-3),
[16, 62,242,944, 3682, 14362, 56020, 218510, 852314, 3324512, 12967498 ]
{"000","111","222"},a(n)=3 a(n—1)+3 a(n—-2) +a(n-3),
[16, 61,235,904, 3478, 13381, 51481, 198064, 762016, 2931721, 11279275]
{"000", "111","222","333"},a(n)=3 a(n—-1)+3 a(n-2),
[16, 60, 228, 864, 3276, 12420, 47088, 178524, 676836, 2566080, 9728748 ]
> MinRecRelAnyBase ({"0000"}, 3) ;MinRecRelAnyBase ({"0000",
"1111"},3) ;MinRecRelAnyBase ({"0000", "1111", "2222"},3};
1"0000"},a(n)=2a(n-1)+2a(n-2)+2a(n—3)+2a(n-4),
[27, 80,238,708, 2106, 6264, 18632, 55420, 164844, 490320, 1458432 ]
{"0000", "1111"}, a(n)zZa(n—‘1)+2a(n—-2)+2 a(n-3)+a(n—-4),
[27,79, 233, 687, 2025, 5969, 17595, 51865, 152883, 450655, 1328401 ]
1"0000", "1111","2222"}, a(n)=2a(n—-1)+2a(n—-2)+2a(n-3),
[27,78, 228, 666, 1944, 5676, 16572, 48384, 141264, 412440, 1204176 ]

So, if S is a set of s characters from a g-ary alphabet, then the recurrence relation for g-ary

strings with no run of k identical characters from S, appears to be:
am)=(q-Da@-1)+(q-1)a@®-2) +...+(q- 1) a(nk+1)+(q-s) a(n-k) .

This can be proved using a somewhat more involved argument than those presented

earlier.

Now we are in a position to consider binary rectangles free of several two dimensional
patterns. First consider the number of 2 x n binary rectangles that have no two ones side
by side, horizontally or vertically. We can consider a 2 x n rectangle to be a length n

string, over the alphabet:
> 0 = <0,0>,1=<1,0>,2=<0,1>;

o g 1

Thus a 2 x n rectangle without two ones side by side corresponds to a string over the
alphabet { 0, 1, 2 } that does not contain "11" or "22". So we have:

> MinRecRelAnyBase ({"11", "22"},63);
{"11","22"},a(n)=2a(n—-1)+a(n-2),
[3,7,17,41,99, 239, 577, 1393, 3363, 8119, 19601 ]
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This is consistent with our observation that the recurrence relation for g-ary strings with
no run of k identical characters from a set of s characters is:
am)=(q-Dam-1)+(q-amn-2)+...+(q-1)a(n-k+1)+(q-s)a(n-k),withqg=3,k
=2,and s =2.

Now we consider the number of 2 x n binary rectangles that have no two ones adjacent,
horizontally, vertically, or diagonally. These may be identified with length n strings over
the same alphabet. that do not contain "11", "12", "21", or "22". Hence we have:

> MinRecRelAnyBase ({"11", m"12", "21",6 "22w} 3);

{"11","2", 21", "22" Y, a(n)=a(n—-1)+2a(n-2),
[3,5,11,21,43,85,171, 341, 683, 1365, 2731 ]

After a moments thought we can find the following purely theoretical argument for this

recurrence relation:

We may divide strings of length n over { 0, 1, 2 } into cases based on the first character.

If the 1st character is O, the string must have the form: "0 [ any length n-1 string w/o

11,12,21,0r 22 ]", hence a(n-1);

If the 1st character is 1, the string must have the form: "1 0 [ any length n-2 string w/o

11,12, 21, or 22 1", hence a(n-2) ;

If the 1st character is 2, the string must have the form: "2 0 [ any length n-2 string w/o

11,12, 21, or 22 ]", hence a(n-2) ;

Summing these three cases yields: a(n) = a(n-1) + 2 a(n-2).

Now consider the number of 2 x n binary rectangles that have no 2 x 2 block of ones.
These may be identified with length n strings over the larger alphabet

> 0 = <0,0>,1=<1,0>,2=<0,1>,3=<1,1>;

o{ ] o ol |

that do not contain "33". Thus we have:
> MinRecRelAnyBase ({"33"},b4);

{"33"},a(n)=3a(n—-1)+3a(n-2),
[4,15,57,216, 819, 3105, 11772, 44631, 169209, 641520, 2432187

This is an immediate consequence of the observation that the recurrence relation for g-ary
strings with no run of k identical characters from a set of s characters is:
am)=(q-1Dam-1)+(q-1)am-2)+...+(q-1)an-k+l)+(q-s)an-k), withq=4,k
=2, ands=1.

101



Carrying this 1dea further, consider the number of 2 x n binary rectangles that have no 2 x
2 block of ones or zeros. These may be identified with length n strings over the four
character alphabet that do not contain "00" or "33". Thus we have:

> MinRecRelAnyBase ({"00", "33"},4);

{"00","33"}, a(n) =3 a(n—1)+2 a(n-2),
[4, 14, 50, 178, 634, 2258, 8042, 28642, 102010, 363314, 1293962]

Again, however, this is already an immediate consequence of the observation that the
recurrence relation for g-ary strings with no run of k identical characters from a set of s
characters is:

am)=(q-1)am-1)+(q-1)amn-2)+...+(q-1) a(n-k+1) + (q - s) a(n-k) , this time with
qg=4,k=2,ands=2.

Next we consider the number of 2 x n binary rectangles that have no 2 x 2 "checkerboard"
block. These may be identified with length n strings over the four character alphabet that
do not contain "12" or "21". Thus we have:
> MinRecRelAnyBase ({"12", "21"}, 4);
{"12",21"},a(n)=3a(n-1)+2a(n-2),

[4, 14,50, 178, 634, 2258, 8042, 28642, 102010, 363314, 1293962 ]
It is interesting to note that this is exactly the same sequence as the previous example.
However, it is not immediately obvious that avoiding "12" and "21" results from barring
two repeated characters. We draw the connection as follows. We can transform any
length n string over { 0, 1, 2, 3 } into another string over the same alphabet by applying
the transposition permutation (0)(1, 2)(3) to the characters in the odd positions in the
string. This mapping is a bijection and the original string will lack 12 and 21 if and only
if its image lacks 11 and 22. Hence the number of strings without 12 or 21 is the same as
the number without 11 or 22, which is the same as the number that lack 00 or 22, as in the
previous example.

Unfortunately, the regularity of these recurrence relations and simple theoretical
explanations does not continue into larger forbidden patterns or rectangles.

Consider the number of 2 x n binary rectangles that have no three ones in a row. These
may be identified with length n strings over the alphabet {0, 1, 2, 3}, which we have used
before, thatdo notcontain 111", "113", "131","133", 222", "223", "232", "233", "333",
"331", "311", "332", "322", "313", or "323", Thuswe have;
> MinRecRelAnyBase ({"111", "113", wi31mw,6 "7"133",6 ©n222",
n223n, "233", w232n w3330 w331n  n31iv, w332n w3220
n313n, 13237} ,4);
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that do not contain "33", "37", "66", "67", "73", "76", or "77". Thus we have:
> MinRecRelAnyBase ({"33", "37", "6, "e7", "73", "7e",
nggn } ; 8) ;
{"33","37","66", "67", "73","76", 717" },a(n)=6a(n—-1)+10a(n-2)-Sa(n—-3),[
8,57,417,3032, 22077, 160697, 1169792, 8515337, 61986457, 451223152, 3284626797
]

3 x n rectangles with no 2 x 2 block of ones or zeros may be identified with length n
strings over the same alphabet that do not contain "00", "01", "04", "10", "11", "40", "44",
"33" "37", 66", 67", "73", "76", or "77". Thus we have:
> MinRecRelAnyBase ({"00", "Q1", ©"04", "iQ", "i1"m, 6 "4Q0",
ng4n, m33n, mI7n, nwEEm, nEIn, wIIn, nIEn, 77N} 8);
{"00", "01", "04", "10", "11", "33", "37", "40", "44", "66", "67", "73", 76", "TT" },
a(n)y=6a(n—-1)+3a(n-2)-2a(n-3),
[8, 50,322, 2066, 13262, 85126, 546410, 3507314, 22512862, 144506294, 927561722 ]

3 x n rectangles with no 2 x 2 checkerboard may be identified with length n strings over
the same eight character alphabet that do not contain "12", "16", "21", "24", "25", "34",
"35", 42" 43" 52" 53" 56", "61", or "65". Thus we have:
> MinRecRelAnyBase ({"12", "16", "21", "24", n25n  n34n,
113511’ H42H, 114311, "52’"[ ‘153"1 "56”] "61”, "65"},8) ;
{"12", "16", "21", "24", "25", "34", "35", "42" "43" "52" "53" "56", "61", "65"},
a(n)=6a(n—-1)+3a(n-2)-2a(n—-3),
[8, 50, 322, 2066, 13262, 85126, 546410, 3507314, 22512862, 144506294, 927561722 ]

Note that this is the same as the number of 3 x n rectangles free of a 2 x 2 block of zeros
or ones. This connection can be proved by swapping occurrences of zero and one in
checkerboarded positions of a 3 x n rectangle.

Unfortunately, while the Maple and the algorithm can be used to find recurrence relations
associated with the number of binary rectangles that avoid particular patterns, the results
do not, in general appear to admit simple explanations.
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