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In recent years, I have changed my differential equations course to accommodate a broad 

spectrum of students with diverse math backgrounds, many  of whom work twenty or 

more hours per week. I will first briefly  describe my course and then present examples of 

how I use TEMATH, Visual Python, and videos to motivate and engage my students.

My MTH 212 Course

MTH 212 is a 3-credit differential equations course with Calculus I and II as its only 

prerequisites. However, about half of the students will have completed Calculus III. Note 

that linear algebra is not a prerequisite and there is no time limit on when the calculus 

courses were taken. In theory, there is a standard syllabus but  in recent years not in 

practice. The reasons are many:  First, about 10% to 40% of the students have D’s and 

C–‘s in their calculus courses while 10% to 40% of the students (largely  from physics 

and electrical engineering) are extremely  strong, and have solid A’s and B’s in their 

calculus courses. Thus, there is an extreme range in backgrounds and interests. Further, 

the size of the class can be anywhere from 30 to 60 students, and a section may or may 

not be held in a computer lab environment. In any case, I can’t assume the students have 

a working knowledge of Maple or MATLAB nor can I assume that they have access to 

Maple or MATLAB outside the classroom. To further complicate matters, a grader may 

or may not be provided depending on the resources available in a given semester. Also, 

because this is a one-semester service course, many students won’t purchase a text  that 

costs more than $100. For this reason, I’ve stopped using my favorite text for the course 

by Paul Blanchard et al. (see [1]), and have switched to the text by James C. Robinson 

supplemented by the Schaum’s Outline on Differential Equations (see [2] and [3]). 

Finally, because many of the students work 20+ hours per week or are taking overloads, it 

is becoming increasingly  difficult to get  them to do all the work necessary to learn the 

material!  Consequently, I’ve reduced the number of topics to the following:

• Integration techniques and trivial ODE’s • Existence & uniqueness of solutions

• Separable differential equations • Autonomous differential equations

• Euler and Runge-Kutta Methods • First-order linear equations

• Applications of first-order equations •  Second-order linear equations

• Applications of second-order linear equations • First-order 2D linear systems

In particular, unless I have an exceptionally strong class, I omit the Laplace Transform 

and infinite series solutions. To help  engage my students in the classroom, I’ve reduced 
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the amount of time I spend on formal lecturing and have increased my use of in-class 

worksheets. To motivate students’ interest in the material, I have increased my use of 

software and video demonstrations of applications of differential equations. Examples are 

presented below. 

Software Demonstrations

    Figure 1: A bouncing ball simulation     Figure 2: A Poiseuille Flow simulation

Example 1: A Visual Python simulation of a bouncing ball (see Figure 1 above and [6]).

The model used is d 2r dt 2 = 0, − g  where v(0) = v
x,0
,v

y,0
, tn, landing is the time the ball 

lands for the nth -time, and the velocity at the start t
n
of the nth -bounce is 

vn (tn ) = bounceCoeff vn−1, x (tn−1, landing ), − vn−1, y (tn−1, landing )  since tn = tn−1, landing .□

from visual import *
scene1 = display(title='Example Thrown Ball with Bounce',
         x=0, y=0, width=800, height=800, center=(50,20,4))
## The floor upon which the ball bounces
floor = box(pos = (50, 0, 0), length=100, height= 1, width=6,  
            color=color.blue)
## The The Ball:
a0 = vector(0, -9.81, 0) ## initial acceleration
v0 = vector(6,   12, 0)  ## initial velocity
p0 = vector(0,   50, 0)  ## initial position
bounceCoeff = 0.8 ## Bounce coefficient; reduces v after each bounce
ball = sphere(pos=p0, color=color.red, radius = 2)
ball.velocity = v0
ball.trail = curve(color=color.yellow, radius = 0.3)
## Vectors used to represent the vector's a and v
## Note: They are scaled so that they are both visible
scaleFactor = 0.7
vArrow = arrow(pos = p0, axis=v0*scaleFactor, shaftwidth=0.5,
               color=color.green) 
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aArrow = arrow(pos = p0, axis=a0*scaleFactor, shaftwidth=0.5,      
               color=color.yellow
## Output label
positionVelocityLabel = label(pos=(50,-20,0), text ="",       
                    height=30,linecolor= color.red, border = 20)

def displayOutputStr(ball):
    formatStr = "(x,y) = (%6.2f, %6.2f) \n v = <%6.2f, %6.2f> "
    v = ball.velocity
    positionVelocityLabel.text = formatStr%(ball.x,ball.y,v.x,v.y)

## Initialize time variables
t = 0; dt = 0.1; totalTime = 0
finished = False
while not finished: ## Animation loop
    rate(10) ## Control animation rate
    displayOutputStr(ball) # Update the output
    # Compute the balls new position and velocity
    ball.pos = p0 + v0*t + a0*(t**2)/2.0
    ball.velocity = v0 + a0*t
    ball.trail.append(pos=ball.pos)
    # Update the velocity and acceleration arrows
    vArrow.pos = ball.pos
    vArrow.axis = ball.velocity*scaleFactor
    aArrow.pos = ball.pos
    # Increment time:
    t += dt         # Increment running time for current bounce
    totalTime += dt # Increment total running time for all bounces
    if ball.y < 2: # Ball is less than 2 m above the ground;
                   # Hence, the ball has hit the ground. 
                   # Need to reset t, p0, and v0
        t = 0 # Reset running time for bounce back to zero
        p0.x = ball.x; p0.y = 2  # Reset the initial position of 
                                 # the ball to the point of impact.
        # Reset the veloicty
        v0.x =  ball.velocity.x*bounceCoeff # Reduce Vx
        v0.y = -ball.velocity.y*bounceCoeff # Reverse and reduce Vy   
    # Stop when ball reaches the end of the floor
    finished = (ball.x>=98)

Example 2: A Visual Python simulation of a Poiseuille Flow in a cylinder of radius a 
   (see Figure 2 above and page 34 of [2]).

The model  used is dv dt = −Pr 2 + c r  where r is the distance from the center of the 

cylinder of a particle moving with velocity v, P > 0  is a constant and c is an arbitrary  
constant, v(a) = 0 , v(r) < ∞ , and 0 ≤ r ≤ a . □

   
from visual import *
## Create the scene window and the pipe
scene2 = display(title='Poiseuille Flow', x=0, y=0, 
       width=600, height=600, center=(15,0,0), background=(1,1,1))
a = 10; P = .1
pipe = cylinder(pos=(0,0,0), axis=(30,0,0), radius=10,
                color = color.gray(0.5), opacity=0.4)
useZParticles = True
pLabel = label(pos=(15,12,0), text='V(r) = P/4(a^2-r^2)', 
               height=24, font='sans')
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## Create the particles
particles = []
pColors = [color.red, color.green, color.blue, 
           color.yellow, color.cyan, color.magenta]
for r in arange(-9.5, 9.5, 0.5):
    p = sphere(pos = (0, r, 0), radius = 0.5, color = color.red)
    p.startPos = vector(0, r, 0)
    V = P/4.0*(a**2-r**2)
    p.velocity = vector(V, 0, 0); p.t = 0; p.colorIndex = 0
    particles.append(p)
if useZParticles:
    for r in arange(-9.5, 9.5, 0.5):
        p = sphere(pos = (0, 0, r), radius = 0.5, color = color.red)
        p.startPos = vector(0, 0, r)
        V = P/4.0*(a**2-r**2)
        p.velocity = vector(V, 0, 0); p.t = 0; p.colorIndex = 0
        particles.append(p)
dt = 0.01
while True: ## The Animation Loop
    rate(100)
    for p in particles:
        p.t += dt ## Increment the partial’s time
        if p.x < 30: ## Move the partial with the flow
            p.pos = p.startPos + p.velocity*p.t
        else: ## Move the particle to the start of the pipe 
              ## and change its color - simulates many particles!
            p.pos = p.startPos; p.t = 0
            p.colorIndex = (p.colorIndex +1)%6
            p.color = pColors[p.colorIndex]

Example 3: Use TEMATH’s first-order differential equation solver tool to demonstrate 

    Euler’s Method (see Figure 3 below and [4]). 

For the demo, I use the initial value problem dy dx = x − y2 , y(0) = 0 . This example is 

widely used because it is relatively easy to evaluate by hand and it is known that its 

solutions can’t be expressed in terms of elementary functions (see [3]). I also repeat this 

example using a spreadsheet and assign the students a worksheet containing several more 

problems which they can either complete by hand or by using a spreadsheet during the 

class meeting. For extra credit, I have the students use a spreadsheet to implement the 4 th

-Order Runge-Kutta Method and compare its solutions to those obtained by using Euler’s 

Method.  □

Example 4: Use TEMATH’s first-order differential equation solver tool to show that 

     dy dx = y3  does not have unique solutions (see Figure 7 below and [4]). 

Given a constant c, the three functions

 f (x) = 0 , g(x) =
(2x 3+ c)

3 2
if x ≥ −3c 2

0                otherwise






,  h(x) =

−(2x 3+ c)
3 2

if x ≥ −3c 2

0                otherwise








are all solutions of this differential equations that satisfy the same initial condition 
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f (− 3c 2) = g(− 3c 2) = h(− 3c 2) = 0

Thus, dy dx = y3  fails to have a unique solution at an infinite number of points in its 

domain!  □

Figure 3: Using TEMATH to Demo Euler’s Method

Example 5:  A Visual Python simulation of Hooke’s Law (see Figure 4 below).

I use this simulation to help  students relate the properties of the mass-spring system 

model and its parameters to its solutions. The simulation dynamically  displays the motion 

of the mass and plots the position of the mass against time when the system is subject to 

zero damping, critical damping, over-damping, under-damping, resonance, and near 

resonance. In the case of resonance, the virtual spring is allowed to increase in length 

without bound, which of course can’t happen, but  does get the full attention of my 

students!  □
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Figure 4: Hooke’s Law Simulation

from visual import *
from visual.controls import *
from visual.graph import *
ZeroDamping = 0; UnderDamped = 1; CriticallyDamped = 2
OverDamped = 3; Resonance = 4; NearResonance = 5
kind = ZeroDamping
titleStr = 'Zero-Damped'; finished = False
scene = display(title="Hooke's Law", x=0, y=0, 
    width=500, height=800, center=(0,80,0), background=(1,1,1))
# Create a control window
cWidth = 150; cHeight = 50
cWindow = controls(title = "Controls", x = 500, y = 450,
                   width = 400, height = 300, range = 200)

button( pos=(-80, 90), width=cWidth, height=cHeight, color =    
      color.orange, text=”Zero”, action=lambda:setKind(ZeroDamping) )
button( pos=(-80, 30), width=cWidth, height=cHeight, color = 
color.green, text="Under", action=lambda: setKind(UnderDamped) )
button( pos=(-80,-30), width=cWidth, height=cHeight,color = 
color.magenta,text="Critically",action=lambda:setKind(CriticallyDamped))
button( pos=( 80, 90), width=cWidth, height=cHeight, color =   
        color.cyan,text="Over", action=lambda: setKind(OverDamped) )
button( pos=( 80, 30), width=cWidth, height=cHeight, color =   
      color.red, text="Resonance", action=lambda: setKind(Resonance) )
button( pos=( 80,-30), width=cWidth, height=cHeight, color = 
color.yellow,text="Near Resonance",action=lambda:setKind(NearResonance))
button( pos=(0,-90), width=cWidth, height=cHeight, color = color.white,
        text="Stop", action=lambda: doStop() )
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# Create a Graph window
graph1 = gdisplay(x=500, y=0,width=500, height=500, 
  title = titleStr+' Oscillation', xtitle='t', ytitle='Y', 
  xmin = 0., xmax=20*pi, ymin = -10, ymax = 10, 
  foreground=color.white, background=(0,0,0))
typeLabel = label(pos=(0,130,0), text = titleStr,  height=30)
diffEqLabel = label(pos=(0,120,0), text= "y'' + 4y = 0",  height=30)
initialConditionLabel=label(pos=(0,110,0),text="y(0) = 4, y'(0) = 0",            
                           height=30)

## Create the function plots
functs = []     
functs.append(gcurve(color=color.orange, dot=True, size=10))
functs.append(gcurve(color=color.green,  dot=True, size=10))
functs.append(gcurve(color=color.magenta,dot=True,size=10))
functs.append(gcurve(color=color.cyan,   dot=True, size=10))
functs.append(gcurve(color=color.red,    dot=True, size=10))
functs.append(gcurve(color=color.yellow, dot=True, size=10))
for f in functs: f.gcurve.radius = 0.3

## Create the control call back functions
def displayKind():
    global kind, typeLabel, diffEqLabel, graph1, initialConditionLabel
    if kind == ZeroDamping: 
        titleStr = 'Zero-Damped'; diffEqStr = "y'' + 4y = 0"
        initialCondStr = "y(0) = 8, y'(0) = 0" 
        ## => y = 8*cos(2*t)
    elif kind == UnderDamped:
        titleStr = 'Under-Damped';
        diffEqStr = "y'' + 0.2y' + 4.01y = 0"
        initialCondStr = "y(0) = 8, y'(0) = -0.8" 
        ## => y = 8*cos(2*t)*exp(-0.1*t)
    elif kind == CriticallyDamped:
        titleStr = 'Critically-Damped'
        diffEqStr = "y'' + 0.2y' + 0.01y = 0"
        initialCondStr = "y(0) = -7, y'(0) = 4.2" 
        ## => y = 3.5*(t-2)*exp(-0.1*t)
    elif kind == OverDamped:
        titleStr = 'Over-Damped'; diffEqStr = "y'' + 0.3y' + 0.02y = 0"
        initialCondStr = "y(0) = 8, y'(0) = -1.2" 
        ## => y = 4*(exp(-0.2*t) + exp(-0.1*t))
    elif kind == Resonance:
        titleStr = 'Resonance'; diffEqStr = "y'' + 4y = 2cos(2t)"
        initialCondStr = "y(0) = 0, y'(0) = 0" 
        ## => y = 0.5t*sin(2*t)
    else:## kind == NearResonance:
         titleStr = 'Near Resonance'; 
         diffEqStr = "y'' + 4y = 2cos(2.1t)"
         initialCondStr = "y(0) = 0, y'(0) = 0" 
         ## => y = 2/(cos(2.1*t) - cos(2*t))/(4-(2.1)**2)
    typeLabel.text = titleStr; diffEqLabel.text = diffEqStr
    initialConditionLabel.text = initialCondStr
    ## There is a bug in vPython that causes the program to sometimes   
    ## exit when the next three lines are executed.
    graph1.display.visible = False
    graph1.display.title = titleStr+' Oscillation'
    graph1.display.visible = True
    

138



def setKind(newKind):
    global kind
    functs[kind].gcurve.pos = []
    functs[kind].dotobj.visible = False;
    kind = newKind
    functs[kind].dotobj.visible = True;
    displayKind(); reset()

def reset():
    global t, dt
    t = 0; dt = 0.1; finished = False

def doStop():
    global finished
    finished = True

def f(t, kind): ## Compute the position of bottom of spring
    if kind == ZeroDamping:
      return 8*cos(2*t)
    elif kind == UnderDamped:
      return 8*cos(2*t)*exp(-0.1*t)
    elif kind == CriticallyDamped:
      return 3.5*(t-2)*exp(-0.1*t)
    elif kind == OverDamped:
      return 4*(exp(-0.2*t) + exp(-0.1*t))
    elif kind == Resonance:
      return 0.5*t*sin(2*t)
    else:
      return 2*(cos(2.1*t)-cos(2*t))/(4-(2.1)**2)

## Create the scene objects
massRestY = 75  
anchor = box(pos=(0,120,-2), length=70, height=30, width=4, 
             color=color.green)
spring = helix(pos=(0,105,-2), axis=(0,-20, 0), radius=8, 
               color = color.red)
mass = pyramid(pos=(0,massRestY,0), size=(10,20,10), color = 
color.blue)
mass.rotate(angle=pi/2., axis=(0,0,1))
yLabel = label(pos=(0,55,0), text='', height=30)

## The animation loop
setKind(ZeroDamping) ## Start with zero-damping
cWindow.interact()
while not finished:
    rate(10)  ## Set animation rate
    cWindow.interact()  ## Give time to the controls
    t += dt ## Increment time
    dy = f(t, kind) ## Compute the position of the spring’s bottom
    spring.axis = (0, dy-20, 0) ## Resize the spring
    mass.y = dy + massRestY ## Move the mass
    ## Update the output label
    yLabel.text = "dy: %08.4f, y: %07.4f"%(dy, mass.y)
    ## Update the plot of y(t)
    functs[kind].plot(pos = (t,dy) )
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Videos

Example 1: The Famous Tacoma Narrows Bridge Collapse (see Figures 5a-5b below). 

Stock footage of the collapse with sound can be downloaded from http://www. archive. 

org/details/CEP176. The are also many versions at http://www. youtube.com.  I show this 

video when discussing damping and resonance of mass-spring systems. This definitely 

receives the student’s full attention!  □

   Figures 5a: Tacoma Narrows Bridge                 Figure  5b: The Bridge flexing 

Example 2: The Vibration Problem of the Millennium Bridge (see Figure 6 below). 

Unexpectedly its the opening day, the Millennium Bridge started vibrating when a large 

crowd began walking across it. The people in the crowd, in order to keep their balance, 

began walking in a manner that was more in-step with each other. This caused the 

magnitude of the vibrations to increase! Free videos of the opening day can be found at 

www.arup.com/MillenniumBridge/indepth/video.html.There are also many versions at 

www.youtube.com/. This example is particularly good because there is an additional 

video that documents how the ARUP engineers studied the problem. Using the results of 

their studies, the engineers modified the bridge by adding dampers which essentially 

eliminated the vibrations. There is a problem in Robinson’s text (see pages 128-129 of 

[5]) that works through the ARUP engineers’ remedy.  □

Figure 6: The Millennium Bridge
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Figure 7: Using TEMATH to display non-unique solutions
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