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Abstract

Data-rich projects that require use of technology provide an effective way to develop
students’ understanding of different functions and mathematical techniques needed to
solve real-world problems. In this paper, two project topics are presented.: modeling

height from bone length and predicting the population of an endangered species.

Introduction

In algebra and precalculus courses students learn about the behavior of a variety of
functions. Textbooks often contain applications involving functions to drive home the
point that these particular functions are useful in the real world, to showcase important
features of these functions, and to provide an opportunity to apply algebraic techniques
related to problem solving. However, rather than empowering students, applications are
often seen as “just another word problem” or another mathematical hurdle for students to
jump over.

Projects in which students have an opportunity to develop a model from data using the
curve-fitting capabilities of graphing calculators or spreadsheets can provide students
with a stronger connection to the functions they are studying and a deeper understanding
of the properties of those functions. The discussion that follows illustrates how
technology-reliant projects can enhance instruction in algebra and precalculus courses.
During work on projects, students are forced to give up the role of passive learner.
Instead they work collaboratively, grappling with mathematical ideas and problem
solving. In addition, the real-world contexts of the projects give meaning to the symbols,
graphs, and manipulations required to solve mathematical problems.

Linear Functions: Predicting Height From Bone Length
For example, contrast an exercise involving the formula H = 2.38F + 61.41 for predicting

a person’s height, H, in centimeters from the length of their femur, F, in centimeters to a
project in which students take on the role of forensic scientists and determine a model for
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predicting height from data on height and femur length. Not only does the activity create
more student interest, but students can go deeper into the topic of linear functions.

The premise for the project is that a hunter discovers partial skeletal remains that include
femur and ulna bones. As a clue toward identifying the remains, students are asked to
predict the person’s height. But first, they need to create models that summarize the
relationship between height, y, and bone length, x. Students are provided sample data
from the Forensic Data Bank at the University of Tennessee on height (cm), femur length
(mm) and ulna length (mm) of 29 female and 31 male skeletons. The scatterplot of height
versus femur length shown in Figure 1 (data from [2, p. 90]) turns out to have linear form
and hence a least-squares line can be fit to these data.
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Figure 1. Fitting a line to height-versus-femur-length data.

Although students are readily able to identify the values of the slope and y-intercept of
the model, interpreting these quantities in context often proves to be problematic. The y-
intercept of this model indicates that a person whose femur length is 0 mm is predicted to
be 45.3 cm tall, which makes perfect sense mathematically but is nonsense in the context
of this problem. On the other hand, the slope does have meaning in this context: for each
1 mm increase in femur length, height is expected to increase by a 0.27 cm. Hence, for
two people whose femurs differed by 3 mm, we would predict their heights to differ by
0.81 cm.

Next students separate the data by gender and fit separate models for males and females:

e Model for females: y = 0.254x + 53.37

e Model for males: y = 0.234x + 65.05
This provides an opportunity for students to compare the rate of change in height per unit
increase in femur length (the slopes) for the men’s and women’s models. Figure 2 shows
graphs of the two models on the same set of axes.
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Figure 2. Graphs of models for males and females.

Asking students to identify which model, the men’s or women’s model, is represented by
the dotted line forces them to grapple with graphical clues to selecting the model with the
smaller slope. With some basic understanding of the models, students are now ready to
answer questions such as those below:

1.

Imagine that you are called in to advise law enforcement authorities on a case in
which all that remains of a person is the femur bone. With nothing more to go
on, you are unsure whether the person is male or female. If the length of this
bone is 47 cm, how much difference would it make if you used the regression
equation for predicting the height of a man and it turned out that the bone
belonged to a woman? (Warning: Pay attention to the units.)

For what femur length would the regression equation for predicting a man’s
height give the same results as the regression equation for predicting a woman’s
height? (Show how to find the answer using algebra and then how you could
check your result using graphs.) Is that result a reasonable femur length for an
actual person? Explain.

If a man and a woman have femurs of the same length, which of them is likely
to be taller? Justify your answer using graphs of the two regression lines,
remembering to stay within reasonable bounds for femur lengths.

Returning to the mystery of the remains found by the hunter, assume that a skull
found at the site indicates the deceased is male. Predict the person’s height if the
femur measures 474 mm.

These four questions are just a sample of the rich set of questions that can be generated
from this context. Such questions push students to think more deeply about linear
functions and the usefulness of such models in solving real-world problems.

Exponential Functions: Modeling the Kemp’s Ridley Sea Turtle Population

The Kemp’s Ridley Sea Turtle Population Project [1] consists of three activities. In the
first activity students discover that data from an exponential function can be linearized by
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plotting log(y) versus x. Take, for example, y = 4 - 1.25%. A table of values and a plot of
log(y) versus x appear in Figure 3.
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Figure 3. Table of values from an exponential function and a plot of log(y) versus x.

The exercise to work backwards and convert a function such as log(y) = 0.301 +
0.1461x into an explicit function of y in terms of x is challenging for students and
requires that they apply several of the rules for exponents:

1010g(y) = 100301+0.1461x
y — 100.301 . 100.1461x

y — 2 . (100.1461)x
y=~2-14%

Once students have learned how to apply a logarithmic transformation to linearize
exponential data, they are ready to begin Activity 2, which deals with the decline of the
Kemp’s ridley sea turtle population.

The Kemp’s ridley sea turtle population experienced a dramatic decline from 1947 to
1986 (see Table 1). It should be noted that it is impossible to estimate the size of the
Kemp’s ridley population directly. Young turtles and males stay at sea. Only adult
females come ashore to lay their eggs. Hence, population estimates must be based on the
nesting female population.

Years since | Nesting females,
Year 1947, x y log(y)
1947 0 40,000 + 4.609
1968 21 5000 3.699
1970 23 2500 3.398
1974 27 1200 3.079
1986 39 621 2.793

Table 1. Data on the number of nesting females from 1947 — 1986 .
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Given that a plot of log(y) versus x appears roughly linear, an exponential model is fit to
the data. If the exponential model is fit using a TI-84 graphing calculator, then the result
is y = 37811 - 0.895%, where y is the size of the nesting female population and x is the
time in years since 1947. If Excel is used instead, then the result is y = 37811 - ¢~ %-111%,
This discrepancy in the form of the model provides an opportunity to discuss conversion
from one form of exponential model to the other, a topic covered in most precalculus
textbooks. The 10.5% annual decline can be easily obtained from the first form of the
model. Either form can be used to predict how long it would take for the Kemp’s ridley
sea turtle to be, for all practical purposes, extinct.

In 1978, a binational (Mexican and U.S.) Kemp’s Ridley Working Group was formed.
The group’s efforts resulted in increased protection at the main nesting beach at Rancho
Nuevo in Mexico, promotion of a second nesting beach at Padre Island National Seashore
in Texas, and an experimental “head start” program in which hatchlings were raised in
captivity for their first year to decrease infant mortality. Dr. Rene Marquez, a member of
the working group, developed the following model from data collected from 1978 to
1985 (see [1] for data):

log(N(x)) = 2.89 — 0.0195x,

where N(x) is the expected number of nesting females and x is the time in years since
1977. Students transform Dr. Marquez’s model into the exponential function below

N(x) = 776.247 - (0.956)",

and conclude that the Kemp’s ridley population has continued to decline from 1978 —
1985 but at a slower annual rate of around 4.4%.

With the Kemp’s ridley turtle population still in decline, environmentalists focused their
investigations on the causes of sea turtle mortality. One major cause turned out to be
drowning in the nets of shrimp trawlers. After December 1, 1994, all trawlers in U.S.
waters from Virginia to Mexico were required to use turtle excluder devices (TEDs) year
round. The effect of this change can be seen from the data in Table 2.

Year 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996
Number of nests 854 | 739 70 840 | 899 | 857 | 1153 | 1430 | 1288
Number of nesting females 342 | 296 | 312 | 336 | 360 | 343 | 461 | 572 | 515

Year 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2006
Number of nests 1549 | 2413 | 2298 | 3778 | 3846 | 4194 | 5380 | 4463 | 7866
Number of nesting females 620 | 965 | 919 | 1511 | 1538 | 1678 | 2152 | 1785 | 3146

Table 2. Data on nesting females from 1988 — 2006.
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Activity 3 begins with the analysis of the data in Table 2. Figure 4(a) shows a scatterplot
of the log of the number of nesting females, log(y), versus the years since 1988, x,
beginning with x = 4 (the year prior to the required use of TEDs). The equation of the
regression line is log(y) = 0.072x + 2.209. Transforming the linear model into an
exponential model yields y = 161.808 - 1.180*. A graph of the exponential model
superimposed on a scatterplot of y versus x is shown in Figure 4(b).
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Figure 4. (a) Fitting a line to log(y) versus x; (b) Graph of y versus x and the exponential model.

These data indicate that the Kemp’s ridley sea turtles appear to be rebounding. Based on
the exponential model, the population is growing at an annual rate of 18%. There is one
last question for students:
Under the Endangered Species Act, the Kemp’s ridley sea turtle will be upgraded
from “endangered’ to “threatened” once the population of nesting females at
Rancho Nuevo reaches 10,000. On the basis of your model, predict when the
Kemp’s ridley sea turtle will be upgraded.
To complete the activity students must solve the equation 161.808 - 1.180* = 10,000.

In this project, students have an opportunity to fit exponential models to data and to
interpret the growth patterns as annual percentage rates of change. They find that
applying a logarithmic transformation to an exponential model, y = a - b*, produces a
linear model, log(y) =y’ =log(a) + log(b) - x. In addition, they solve several
equations involving exponential functions in order to make predictions about the decline
or growth of the Kemp’s ridley sea turtle population.

References
[1] Davis, Marsha, “ Modeling the Kemp’s Ridley Sea Turtle Population,” Consortium
Pull-Out Section 99, The Newsletter of the Consortium for Mathematics and Its

Applications, Fall/Winter 2010.

[2] Moran, Judith, Davis, Marsha, & Murphy, Mary, Precalculus: Concepts in Context,
2" Edition, Brookscole, (2004).

75





