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Introduction

Reports including Bio 2010: Transforming Undergraduate Education for Future Re-
search Biologists [2] and Math and Bio 2010 [5] emphasize that aspects of biological
research are becoming more quantitative and that there is a need to introduce fu-
ture life science researchers to a greater array of mathematical and computational
techniques and more sophisticated mathematical reasoning. Moreover, one of the
themes discussed at the Biology CRAFTY Cuwriculum Foundations Project was
that“Creating and analyzing computer simulations of hiological systems provides a
link between biological understanding and mathematical theory,” [3], and the Bio
2010 report asserts the importance for biologists to be able to use computers as tool:
“Computer use is a fact of life of all modern life scientists. Exposure during the
early years of their undergraduate careers will help life science students use current
computer methods and learn how to exploit emerging computer technologies as they
arise,” [2].

Creative solutions can be employed to achieve the desired integration of mathematical,
computational, and biological content without radically changing major requirements
or requiring additional credit hours of course work. Additionally, presenting quantita-
tive approaches to biological problems to all biology majors, not just those who intend
to pursue research careers, in their introductory college mathematics courses provides
these stucdents with a wider range of tools and can better motivate the mathematics.
This paper focuses on one example an activity that is used in the Biocalculus II course
at Benedictine University. The mathematical content of this project is the dynami-
cal behavior of a single ordinary differential equation. The mathematics included in
this rich activity include the stability analysis of equilibria, bifurcation diagrams, and
parametric representations. The biology addresses the behavior of a spruce budworm
population in a balsam fir forest [4]. Other sample activities are available on the
author’s web site:

hitp:/ /www.ben. edu/faculty /tcomar/
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Analyzing the Spruce Budworm Model

We now present a project used in the second semester biocalculus course that ana-
lyzing a model for spruce budworm infestations due to Ludwig, Jones, and Holling
[4]. The spruce budworm is an insect pest which consumes the needles of balsam fir
trees. The trees ultimately die due to the removal of these needles. Typically spruce
budworm population densities are low, but in an outhreak year, spruce budworms
may cause significant devastation by killing up to 80% of the mature trees in a forest
11, 6]. We first describe the model and then outline the computer activity.

There are three variable quantities in this model. The first is the budworm density:.
N, measured in large budworm larvae/acre of land. The second, S is the number
of ten square feet units of branch surface area/acre, and the third, F is a measure
of food energy reserves available to the budworm. As the last two quantities change
much more slowly with respect to time than the budworm density, we will consider
a simplified version of the model in which S and E' are assume to be constant. The
budworm density is modeled by the differential equation:
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where R is the intrinsic growth rate, K is the carrying capacity, and « and 3 are
positive parameters characterizing the predation. The first term of the right-hand
side of the equation provides for logistic growth in absence of a predator. The second
term is a Holling Type III functional response for predation. Specifically, when the
budworm density is low, predation is low; as the budworm density increases, predation
increases but only up to maximal rate of 3. To make the model easier to analyze, we
transform the equation into a nondimensional form via the following substitutions:
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We now proceed with the activity.

1. Open up a new Maple worksheet in Worksheet Mode. Enter the command:

with(plots):with( DE Tools):
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2. Show that the equilibrium & = 0 is unstable.

To perform this step, we need to show that the value of the derivative of the
right-hand side of Equation (2) with respect to z evaluated at x = 0 is positive.
Using Maple, we obtain

d ( ( (1 ;L’) T )) - (1 3‘:) ¥ 2z 0 22
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Evaluating this expression at x = 0. we obtain
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4. Let Big) =r (1 - %) and Q) = Py The nonzero equilibria of Equation

(2) are the nonzero solutions of

R(z) = Q(=). (3)

Let ¢ be the value of x for which () attains maximum value. By experimenting
with simultaneous plots of R and Q, find values of k& and r as requested.

(a) Find values of k& and r so that Equation (3) has one positive solution less
than c.
(b) Find values of k and r so that Equation (3) has one positive solution greater

than c.

(c) Find values of k& and r so that Equation (3) has three positive solutions.

This step can be automated with the following Maple procedure.

plotRQ):=proc(k,r,Xmaz, Ymaz)
description “This procedure plots the curves R and Q.”
local z, plot@), plotR:
i
plotR .= plot (?" . (1 = I) o ="0..Xrmgm, y = 0. Ymag,; color = red,
legend = “R"); -
plot() = plm&(_ — >, & = 0..Xmaz,y = 0.. Ymaz, color = green,
L4

[Gg@nd = “Q!:);
display({plotR, plotQ});
end;

We illustrate three plots using this procedure in Figure 1.
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Figure 1: Simultaneous plots of the curves R and () using the command
plotRQ(k,r,10,1) in the case (a) & = 10 and r = 0.3, (b) &k = 10 and r = 0.7,
and (¢) k=10 and r = 0.5.

4. Consider the two cases ahove in which you found one nonzero equilibrium. In
both of the cases above, use the values of & and r that you found to plot the

s . . £ : :
phase portrait of Equation (2) in the .?:—l——plane and use phase line analysis to
5

determine the stability of the equilibrimﬁ point.

This step can be automated using the Maple procedure plotSBWphase below.
The figures were exported to Microsoft Paint as bitmaps, and the arrows were
created in that program.

plotSBWphase:=proc(k, r, Xmax, Ymin, Y mazx)
description “This procedures plots the phase portrait for the spruce
budworm differential equation in the xdz/dt-plane.”:
: 2
plot (?" = s (1 — i) S yo=0.Xmazx,y=Ymin Ymaz,
J L=fm®
labels = [“z”, “dz/dt"]); end,;

From Figure 2, we observe that in both cases, the single nonzero equilibrium is
locally stable. Instead of using phase line analysis, we could have numerically
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Figure 2: Phase portraits of Equation (2) using the command plotSBW-
phase(k,r, Xmazx,Ymin,Ymax) in the case (a) & = 10 and r = 0.3, Xmaz = 8,
Ymin = —0.5, and Ymaz = 0.1 (b) & = 10, r = 0.7, Xmaz = 10, ¥Y'min = —04,
and Ymax = 0.8,

solved for the value of the equilibria, substituted the values into the derivative
of the right-hand side of Equation (2), and used the stability criterion to deter-
mine stability, which is what was demonstrated for the equilibrium z = 0.

5. Consider the case above in which you found three nonzero equilibria, which we
denote by 1, 29, and %3 in increasing order. The equilibrium %, is known as the
refuge level; o is known as the threshold level; and Iy is known as the outhreak
level. Use the values of & and r that you found above to plot the phase portrait

. , dx _ _ _
of Equation (2) in the ;z:‘d——plane and use phase line analysis to determine the
s

stability of each equilibriﬁm point.

The result of using the command plotSBWphase(10,0.5,8, —0.4,0.4) is given in
Figure 3. Note that the arrows and labels for the equilibria have been added
using Microsoft Paint.

From Figure 3, we can conclude that the equilibria #; and &3 are locally stable
and that the equilibrium s is unstable.
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Figure 3: The phase portrait of Equation (2) using the command plotSBW-
phase(10,0.5,8, —0.4,0.4).

6. Two nonzero equilibria occur when the curves R and () not only intersect but
also are tangent at one of the intersection points. Such behavior is an inter-
mediate case between the cases analyzed above. We can determine all ordered
pairs (k,r) for which exactly two nonzero equilibria, #; and &3 occur by solving
the system of equations

R(z) = Q) (4)

d d

Solve the system for & and r in terms of .

Using following Maple code

H = H] s (1 - ;id) G i= g % i -il.rzt ggnl =Rz = Qlzl
d :
sgn2 = —R(z) = —Q(x): soli v, eqn?2l, |k, r)):
eqn dwR(L) (.'l.‘L'Q(L) solve(leqnl, eqn2], [k, r]);
we obtain the solution
2z° o

k=—r——, 7=———.
-1+ 22’ 1+ 222 4+ x4
We now have a parametric representation for the cases in which there are ex-

actly two nonzero equilibria. Observe that this parametric representation is
defined for x > 1.
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7. Plot this parametric representation in the kr-plane.

Figure 4 is plotted using the command:

223 23 _
plot = - o =1.30| ,k=0..30,r=0..0.8 |;
—14+a2" 1+ 222+ 24

0gq

Figure 4: The plot of the parametric representation for the values of the & and r
which give rise to two nonzero equilibria.

8. Notice that parametric curve has a cusp. Determine the value of the parameter
x at which the cusp occurs.

This is can be determined by computing % = —g;; ji

In a simplified form, we have
dr _ 33— (e~ 1P ©)
- - )
dk 2('1;2 — 3)(1 4 rE).i

Because the curve is defined only for z > 1, the one value of = for which this
quantity is not defined is at & = /3. Notice that the case in which three nonzero
equilibria occur lies inside the cusped region, and the two cases in which one
equilibrium occurs lie outside the cusped region.

9. Now that we know the conditions for when two nonzero equilibria appear. Use
the values of x = 1.2 and = = 4 to find the corresponding values of & and r and
then plot the curves R and Q and phase portraits as in the previous cases. In
hoth cases, determine the stability of each nonzero equilibrium.

62



For the case in which x = 1.2, we use the Maple code

Al'*‘f;ubs(r—l.Z )71—51.',375(7:—12 m)
plotRQ(k1,r1,8,0.6); plotS’Bthase(M rl,8,—1,0.4);

to obtain the results in Figure 5. The first equilibrium #; = #» is semistable,
and the other equilibrium 23 is locally stable.
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Figure 5: Both plots use the values of k& and r for which z = 1.2. (a) Simultaneous
plots of the curves R and @. (b) The phase portrait of Equation 2.

For the case in which 2 = 4, we use the Maple code

k2 = subs (L ] 1+1 ) r2 = subs (.‘L‘ =4 ﬁ)

plotRQ(k2,r2,8,0.6);plotSBWphase(k2,72,8, —0.6,0.1);

to obtain the results in Figure 6. The first equilibrium #; is locally stable, and
the equilibrium &3 = @2 is semistable.
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Figure 6: Both plots use the values of k& and r for which z = 4. (a) Simultaneous
plots of the curves R and @. (b) The phase portrait of Equation 2.

10. Set & = 10. Create a bifurcation diagram for Equation (2) in which » is the
bifurcation parameter. Observe two nonzero bifurcation values and describe the
type of bifurcations that occur at these values.

The bifurcation diagram can be created with the simple Maple code:
unassign(‘r’):

i#rnphicitplot(rv (7" (1 — %) — 1;‘2> o =0.1,z = 0..10, gridrefine = 5,
thickness = 3)

[ = r
a 02 04 LIk} 0z 1
Figure 7: The bifurcation diagram for Equation (2) with & = 10 and bifurcation

para meter r.

The bifurcations at the nonzero bifurcation values are saddle node bifurca-
tions, which is consistent with our preceding analysis. Note that the portion of
the curve connecting the two nonzero hifurcation points represents an unstable
equilibrium point. (The branch of the bifurcation diagram along the r-axis also
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1.,

represents an unstable equilibrium, which was determined at the beginning of
the activity.)

Interpret the mathematical analysis in biological terms.

We have already mentioned that the equilibrium 2; is the refuge equilibrium and
the equilibrium @3 is the outbreak equilibrium. The spruce budworm population
remains under control until conditions change for the population to explode past
the threshold equilibrium and establish a stable outbreak equilibrium. The
question for pest management specialists is to determine methods to keep the
population under control in the refuge state. Details on the management of the
spruce budworm can be found in [6].
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