VISUALZING MATHEMATICS CONCEPTS WITH USER INTERFACES IN MATLAB

David Szurley
Francis Marion University
Department of Mathematics

Florence, SC 29501

I.  INTRODUCTION

Computers play a major role in today's business and academic settings. Exposure to commercial
packages is a major advantage for graduates seeking employment or continuing their studies at
graduate school. Matlab is a high-level language that provides an interactive graphical user
interface. It is featured in hundreds of textbooks in enginecering and the sciences and is
integrated in the curriculum at many universities. The author has attempted to incorporate
Matlab within courses covering calculus, linear algebra, and linear programming, among others.
Assignments were created to graphically illustrate concepts taught within these courses. Code
would be supplied to the students to solve an example problem. The students were expected to
change the code to solve similar problems. The advantages were exposure to Matlab and a
graphical understanding of the concept. Unfortunately, these assignments required students to
modify or write code in Matlab. In order to accomplish this, time had to be spent in class
explaining the code given to the students. This was very time-consuming or the author and
frustrating to the students. Many students did not appreciate the intended effect of the
assignments due to the time spent on modifying the code.

Graphical user interfaces (GUIs) provide a means of introducing students to scientific packages
without entirely involving the students within the code. Instead of expecting students to modify
code, they may simply edit text and click a button. The required calculations arc then
accomplished for the students without being visible. By creating GUIs, the author hopes to
create assignments that require the students to change only a minimal amount of quantities.
Moreover, the underlying calculations are hidden from the students. These GUIs will still
graphically illustrate the concepts and expose students to Matlab, but also save class time owing
to the simplified use.

339



In this paper, we will explain how to create simple GUIs with Matlab. The portions of a GUI
will be explained and how information supplied within the GUI may be accessed. Finally, two
examples will be discussed and advantages and disadvantages of GUIs with Matlab will be
discussed.

II. HOW TO CREATE GUIS IN MATLAB - VISUAL ASPECT

One may view GUIs as consisting of two elements: the visual and actions aspects. The visual
aspect is what the user sees while the action aspect is the calculations underneath. In Matlab, we
may create the visual aspect in two ways, either by writing code or using GUIDE. author has
attempted to write code to develop the visual aspect, but has encountered several difficulties.
Sizing and placement of GUI components have been the most problematic for the author. Thus,
we will concentrate our efforts on creating GUIs using guide.

GUIDE is the internal Matlab GUI development interface. It enables simplificd arrangement and
sizing of GUI components as well as auto-generation of code for these components. Examples
of GUI components would be push buttons, axes, sliders, pop-up menus, among others. GUIDE
may be started by typing guide at the Matlab command prompt. Figure 1 displays what the user
will see when beginning GUIDE.

& GUI aith Uicartrals
-#+ GUIL with Axes and Menu
4 Modal Qusstion Dialog

¢
i [5ave new figure as: -

{‘.‘....OK j [ Cancel } [ Help

Figure 1: Beginning GUIDE.

In the quick start menu, one may load an existing GUI or start a new GUL Although we will
begin with a blank GUI, Matlab provides some basic layouts with specific components included.
Figure 2 presents the blank GUI layout.

340



sEbhd BB >

(o=
= popuphen |
| M= 1oogis Button
(B
7 Button Growp

| 2X Activex Contrel |

< >
Tag: figuwal Current Point; [195, 201]  Postisn: [S20. 380, 560, 420]

Figure 2: Blank GUIL

The GUI components may be viewed on the left in Figure 2. Components may be placed on the
workspace by clicking on the desired, moving the cursor to the workspace, and clicking. The
position of the cursor when clicked determines the upper-left corner of the component. Once the
component is placed in the workspace, attributes such as size and position may be adjusted using
the cursor. Other attributes may be adjusted a the Property Inspector, which may be viewed by
doubling-clicking on the component or chosen from a drop-down menu when right-clicking on
the component. Figure 3 shows an example of a push button with its property inspector open.

* BadgoundCobe M 3 AfLl S GRoe sEHE U B
BangDeletzd H rT:«"L'it—| 7 + ; i Y
BusvAction quane . T —— ;
ButkorDawnFen (58 > lw] 3 4
Data 00 dable o, o | | omsde
Caltaack BB sautomatic s [ @ Radobution
Clipping on S I !
CreateFon =] &
Delet=Fen = = . :
# Extert A ) 13 Popere Reou !
FontAngle notnial - EH Listhox
Forthame MSSansSerif
FontSize 5.0 & |
FantUnts pomts -
+ FaregroundCalor 620 ]
Handetbdty an :
HitTast an % X AdtivaX Contrel
Heeizantalligrment center -
Int=iruptible on
FevPrassFen (&) 7
ListboxTaop 1o % %
ax 16 » v } Tag: pushbutton2 Currert Point: [71,333]  Position: [81. 159, 235, 103]

Figure 3: Push button with its property inspector.

341



Properties such as font, size, style, and the text on the push button may be edited via the property
inspector. Note that help <command> or doc <command> will invoke the Matlab help menu or
documentation for <command>. Generally, the author chooses to change only “String” (what
rhe user initially sees) and “Tag” (reference title for the component).

One may choose “Save As...” at any time to save the GUI. However, the specified filename will
be the title of the GUIL. Also, the first time the GUI is saved, Matlab will auto-generate the code
associated with the components of the GUL. This code will appear in the standaed Matlab m-file
editor. An example is shown in Figure 4.

Fle FEdt Text Go Cell Tools Debug Desktop Window Help

DO s B o e 9 Aed ik BR Sy

BB - e s x e @

= ER 25 "':"ff.\

€1 iy igue NTODTanu !

€2

€3

£4

£5 Ro=ws ITONES rony SRRANY Tiasl

gé funcrion varargout data, handlss)

£ % o i

&8

CE B

70

Tl

72 b odaT defanit oowmandd lins oubpur frow handizs scrudtyvs

Figoom varargout{l} = handlzs.output;

74

5

e function GUIFushButcon Callback(hObjsct, svantdata, handles)

77

i

I8 ek
ExanpleGUI in 79  Cal 1

Figure 4: Auto-generated Matlab code for a GUI.

This code contains the code for the definition of cach component in the GUI. Code for the
callbacks (action upon execution of a component) for each component should be written within
the appropriate function in this m-file. Two comments are in order here. First, the button that

resembles , lists the functions associated with the components of the GUIL. Clicking on a name

within this list will locate the cursor at the beginning of that function. Since the default Matlab
names for GUI components tend to be generic (e.g., pushbuttonl, etc.), the author chooses to
modify the tag attribute as described previously. Secondly, note the function for the example
single push button GUI is GUIPushButton_Callback. Here Matlab appended the user tag of
GUIPushButton with _Callback. Code for the set of actions to be performed when the push
button 1s pressed should be placed within this function.

342



III. HOW TO CREATE GUIS IN MATLAB — ACTION ASPECT

Regardless of how the visual aspect of the GUI is created, code must still be written for the
callbacks. Since we have not been writing a GUI to solve a particular problem, it is not feasible
to describe how to write these callbacks. However, we will concentrate on the communication
between the user and Matlab. The commands get and ser may be used to get or set component
properties. Components within the GUI may be referenced via handles.<Tag>, where <Tag> is
the tag of the component to be referenced. For example, get(handles. EditText, ‘String’) would
obtain the string entered in the component with the tag EditText. The symbols that the user
enters will be stored as characters and any quantity to be displayed to the GUI is required to be a
character. We may use the commands str2num and num2str to convert from a string to a number
and vice versa. One final comment is in order here. The command guidata(hObject, handles)
may be used to update component data.

IV. HOW TO EXECUTE A GUI

Once a GUI is created, there are two ways to execute it: either via the command line or GUIDE.
We may execute a GUI by typing the title of the GUI in the command line in Matlab or we may
press the green play button on the toolbar when using GUIDE. In either case, errors are still
appear in the Maltab command prompt.

V. EXAMPLE #1

Suppose we would like to create a GUI that will accept a user-determined number and evaluate a
function as determined in a pop-up menu. The finished GUI is shown in Figure 5.

Figure 5: Format of the GUI for example #1.

343



This GUI will consist of six components:

e Pop-up menu to determine the function to be evaluated
e Two static text boxes for parentheses (for looks)

e Edit text for the user-specified value

e Push button for the evaluation

e Static text to contain the answer

Using the procedure described previously, we may add each component and modify their string
and tag properties. However, we will look at the pop-up menu to determine the function in more
detail. The pop-up menu will contain seven strings: Select, cos, sin, In, log, ¢”, and 10*. The
first 1s for looks; the others will represent the functions sine, cosine, natural logarithm, common
logarithm, natural exponential, and exponential function with base 10. Since there is more than
onc string to enter, the “String” attribute has to be modified in a different manner than
previously. To the left of the default string is a button that may be pushed to obtain what
resembles a text editor. Here we may enter the strings to be displayed by the pop-up menu on
separate lines. Figure 6 contains an image of the property editor along with the editor containing
the strings.

Pasition [1817,769191.462] »~ ;Ds
SelectionHighhght on . In
# SliderStep [2.010.1] 100
String B select # fg,‘
Styla popUpMEntS -
Tag FopUpFen &
TaokipString &
. UlContextreny <Monex v
x units charactzrs - N ) . _— §
- UserData HH [ox0 double arr... o v (Co ) [Ccancel |
a 4 5 SR e

Figure 6: Pop-up menu strings.

Onec way Matlab refers to the strings in the pop-up menu is by assigning each string a number.
Matlab will assign the first string the number one, second string the number two, and so on.
Hence, get(handles.PopUpMenu, ‘Value’) will obtain the number associated with the string
selected by the user. A switch construct (or equivalent) may then be used to evaluate the correct
function.

Once the visual aspect of the GUI is completed, code must be written to obtain the user-defined
information from the GUI and display the result. There are four steps that must be
accomplished.

e (btain the function

344



e Obtain the value
e [valuate the function

e Display the result

Since no actions are required to be accomplished by either the pop-up menu or the edit text box
(the simply obtain information from the user), all of these may be accomplished within the
function for the push button. Figure 7 contains the code that will accomplish these four tasks.

function PushEquals Callback (hObject, eventdata, handles:

Lot Bwioah

awitaeh { gevihandles., PoplUpFon, 'Falus') |
cass 1
FWozd “Ssligctt = o B0 use
cass 2

gutput = gosiValus)
cass 3

output

sin{Valu=s) :

Gutput = logi{Valus) ;

cags 5

Cutput = loglOi{Valu=i ;
CAsSE B

gutput = axp Valuz) :
cass 7

OCutput = 10" Valu=) ;

otherwiss
SBafauic
21
sevthandles. 8vaticEguals, 'String', numistrioutputiy

guidataihfbiect, handles) ;
Figure 7: Code for the GUI of example #1.

The first portion obtains the user-defined value and converts it from a string to a number. Recall
that ger will obtain the value while str2num will convert the value from a string to a number.
The next portion contains the switch construct that evaluates the appropriate function. First the
value of the pop-up menu is obtained (recall this defines which string the user seclected).
Keeping in mind that one represents the word “Select”, values from two to seven will evaluate
the appropriate function and store the result in the variable Quzpur. The next to last line converts

345



the result to a string and displays that string in the output static text box. Finally, the last linc
updates the components of the GUL

V1. EXAMPLE #2

Suppose now we would like to create a GUI that will accept the terms of a user-defined sequence
and plot them. This GUI will consist of the following components.

e Four static text boxes (for looks)

e Axes to plot the sequence

o Three edit text boxes to obtain the terms of the sequence and the beginning and ending
indices

e Push button to plot the sequence

Figure 8 contains a sample GUI to accomplish this.

Terme

7 Beginring alue

Final

2 Pt

L : . . )
0 0z 04 0.6 08 1

Figure 8: of the GUI for example #2.

Here it is intended that the user will enter the terms of a sequence, the beginning and ending
values, and click on the push button to plot the sequence. It should be noted that the user needs
to write the sequence using array arithmetic notation. The code to update the axes, obtain the
sequence and set it as a function, and obtain the initial and final bounds is shown in Figure 9.

346



ax=s thandles . S=gixes)

S=2q = get(handles.S=sqbef, 'Stoing’y

an = inlinsiSeqg, '‘nty
n g = strinumigst ihandles.n 0Wal, ‘Zorodng'is g
I o= strinumigset (handles.WVal, 'Zordng'il

Figure 9: Portion of the code for example #2.

Note that the internal Matlab function /nline is used to create the form of the sequence. This
function will automatically designate whichever variable students use as the index for the
sequence. The command axes(handles.SegAxes) ensures that the axes on the GUI is the current

working axes.

Evaluating the sequence and plotting the points may be handled in the usual manner. Code to
accomplish these tasks and the final GUI appear in Figures 10 and 11, respectively.
for 1 = a0 1 N

) J A T S
=nd
Seq = a ning ;
plotin, Seq, '=', n, 3Jeqg, T4} ;2
title (charia ni)
xlabelitat)
viabzli‘a n'y

grid on

guidataihChizct, handlss:

Figure 10: Code to define and plot the user-defined sequence.

347



4 a.n=s  hf2

Beginning Vaiue

i 3

Firial

n

n

Figure 11: GUI for example #2.

VII. ADVANTAGES/DISADVANTAGES/CONCLUSIONS

Creating graphical user interfaces with Matlab have the advantage of removing the code from the
sight of the user. This accomplishes two tasks: the user only has to modify a minimal amount of
clements and the instructor does not have to spend as much class time explaining the code. A
disadvantage 1s seen in the second example. In order to input the terms of the sequence, the
students still need to understand array arithmetic. Graphical user interfaces provide an excellent
means of exposing students to a scientific package with a minimal amount of knowledge of the
language.

348





