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Abstract: The primes encompass the atoms of the natural number system. In this session,
participants will use CAS technology with the TI-89/VOYAGE 200 to determine the primality of
integers and explore Fermat’s Method of Factorization and the Lucas-Lehmer Test for Mersenne
primes. In addition, a number of Fibonacci and Lucas numbers will be factored.

Questions involving primality have fascinated both professional and amateur mathematicians
throughout the rich history of the subject. In the appropriate settings, Fermat’s Method of
Factorization, The Lucas-Lehmer Test associated with Mersenne numbers, and the primes in the
Fibonacei and Lucas sequences have been the subject of much study and interest. We will delve
into these ideas in this session and engage the participants.

Fermat’s Method of Factorization is particularly useful when one wishes to factor large integers
in which the prime factors are roughly of equal size. In Fermat’s Method, for a given positive

integer n, one seeks integers x and ysuch that n=x*—y*.Then n=(x—y)-(x+y) (1) and

nis factored. Every positive integer can be represented in the form n = x* — y* by writing

n=a-b
(a > b) and note this yields

a:x+y(2)
b:x—y(?:)
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Adding and subtracting (2) and (3) and then solving for x and y in (4) and (5) gives us

respectively
at+b=2-x (4)
a-b=2-y (5)

x:%-(a+b) (6)

y=(a=8) (7)

Hence x* —y* =

[(a+b) ~(a=b)"]=a-5.(8)

N

As the initial trial for x, we try x, (\/E —‘ where (x—[ =the ceiling

function. ([ x| = the smallest integer > x (x € R)). Now check if Ax, =x —n is a perfect

square. There are only 22 combinations of the last two digits which a square number can assume
so most combinations can be eliminated. Stop when a square number can be obtained.

In 1876, Edouard Lucas discovered a fast way to test the primality of a Mersenne number.
Mersenne numbers are of the form M, =2" —1where nis a positive integer. Using the test and

calculators, several primes were added to the list of Mersenne primes. In 1930, D.H. Lehmer
published an improved version of Lucas’ algorithm. The Lucas-Lehmer Test for primality

follows: Let u(1)=4.For i =0f0i= p—2, compute
u(i+1) = (u(z’)2 ~2) mod M , iff u(p—1)=0, then M ,is a prime, where the "mod M ," means
to keep only the remainder after division by A ,. By way of an example, let us apply the Lucas-

Lehmer Test on M, =31.

u(1)=4;u(2)=(4*-2) mod 31=14;u(3) = (14* ~2) mod 31=8;
u(4)=(8"-2)mod31=0.

Hence M, is a prime number. One can utilize the TI-89 / VOYAGE 200 and apply the test on

M,,M,,and M,,. (M, is not prime.)
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Other activities associated with prime numbers and factoring include the factoring of Fibonacci
and Lucas Numbers. Determining whether a large positive integer is prime or composite is easy
for technology to accomplish and can often be done in seconds. The prime factorization of large
positive integers is an entirely different matter. This problem is classified as NP Hard and a
calculating device could take centuries to factor a large composite integer. The key 1s the second
largest prime factor. If that factor is large, one runs into difficulties. Examples will be provided.
MATHEMATICA, a copyright of Wolfram Research Inc. is a very powerful CAS that can
achieve far more computing power than even a fine CAS graphics calculator. As a postscript,
participants will feel empowered by both the primes and factorization methods and hopefully this
will serve as a springboard for discovering new insights with the aid of CAS technology.

Our first goal is to discover square numbers. This is central for Fermat’s Method. A question
arises as to which positive integers can be perfect squares in the sense that a necessary condition
can be secured. One observes neat patterns in the prefect squares:

12=1,2>=4,3" =9, 4* =16, 5> =25, 6> =36, 7° =49, 8’ =064, 9% =81, 10* =100,
112 =121, 127 =144, 13> =169, 14* =196, 15% =225, 16 =256, 17° = 289, 187 =324,
192 =361, 20% = 400.

The pattern involving the unit’s digits is quite clear. The sequence occurs in the pattern 1, 4, 9, 6,
5,6,9,4, 1,0 and then recycles in this form. Hence integers that constitute perfect squares
necessarily terminate in the digits 0, 1, 4, 5, 6, or 9. (This condition, of course, is not sufficient.
One only needs to examine the integers 21, 34, 59, 75, 86, and 200 and observe that they are not
perfect squares). Thus integers terminating in the digits 2, 3, 5, or 8 cannot be square numbers. In
addition, the pattern of units digits occurs as a palindrome in the sense of reading the same both
backwards as well as forwards (i.e. onehas 1 49 6 5 6 9 4 1 separated by a 0 before recycling in
thesamepattem.Thusourpatternis149656941014965694 101496569410...).
If the last two digits of an integer are to constitute a square number, then one of twenty-two
possible scenarios must occur. This can be investigated via the VOYAGE 200 CAS
manufactured by Texas Instruments Inc. We are inferring that there are only 22 combinations of
the last two digits which a square number can assume, so most combinations can be eliminated.
Stop when a square number is obtained. FIGURE 1 provides the squaring function in
FUNCTION MODE, FIGURE 2 the TABLE SETUP and FIGURES 3-9 the TABLE:
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FIGURE 1 (Y=EDITOR) FIGURE 2 (TABLE SETUP)
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FIGURE 3 (squares of integers 0-7)
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FIGURE 5 (squares of integers 16-23)
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FIGURE 7 (squares of integers 32-39)
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FIGURE 9 (squares of integers 48-55)

From the FIGURES 3-9, we see that the last two digits for an integer that is potentially a perfect
square are 00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81, 84, 89, and 96.
We also observe that the cyclical pattern of the last two digits of the square of an integer
commencing with 0 are 00, 01, 04, 09, 16, 25, 36, 49, 64, 81, 00, 21, 44, 69, 96, 25, 56, 89, 24,
61, 00, 41, 84, 29, 76, 25, 76, 29, 84, 41, 00, 61, 24, 89, 56, 25, 96, 69, 44, 21, 00, 81, 64, 49, 36,
25, 16, 09, 04, 01. We then repeat the cycle in the same fashion starting with 00. While one
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FIGURE 4 (squares of integers 8-15)
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FIGURE 6 (squares of integers 24-31)
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FIGURE 8 (squares of integers 40-47)
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should think modulo 100, the period of the last two digits of the square of a number is 50. Also
note that the first 25 follow a pattern and the last 25 reverse the pattern. For example, the last two
digits of the twenty-sixth square number (76) are identical with the last two digits of the twenty-

fourth square number.

Fermat’s Method works most efficiently if the factors of n(n=xy) are relatively of the same

size. If nis prime, then far too many trials are required. Consequently Fermat’s method is highly
inefficient. In addition, the factors of » need not be prime. The VOYAGE 200 will prove useful
in these investigations. We conclude this section with two examples.

(a). Consider n = 2047 where 2047 = x> — y*. Thus y* = x> —2047. Consider

2047 ~ 45.2437841035. We examine the function y = x* —2047. We view in FIGURE 10 the
function and in FIGURE 11 the TABLE SETUP with the TABLE displayed in FIGURES 12-13:
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FIGURE 12 (looking for first square) FIGURE 13 (found 1089 as the first square)

We seek the first integer in the table which is a perfect square. We immediately eliminate 162,
257, 354, 554, 453, 657, 762, and 978 from consideration; for 62, 57, 54, 53, 57, 62, and 78
cannot be the last two digits of a positive integer that is a perfect square. This leaves us with 69,
869 and 1089. 69 is clearly not a perfect square and neither is 869. On the other

hand, /1089 =33. Thus 1089 is a perfect square found after eleven iterations. We have
n=2047=56>-1089 = 56 —33* = (56 - 33)-(56 +33)=23-89. Hence 2047 =23-89. (Both

factors are prime.)
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(b). 23 is prime, but apply Fermat’s Method. We consider n = 23 where 23 = x* — »*. Thus

3? = x* —23.Note that v23 ~ 4.79583152331. See FIGURE 14. Examine the function
y=x"—23 in FIGURE 15 with the TABLE SETUP in FIGURE 16 and the TABLE in FIGURE
17 below:
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FIGURE 14 (approximation of+/23) FIGURE 15 (Y= EDITOR)
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Observe that the last two digits of a square cannot be 02, 13, 26, 58, 77, or 98 eliminating the
integers 2, 13, 26, 58, 77, and 98 from consideration. Moreover, 41 is not a perfect square. 121 is

a perfect square; for121=11°, the initial perfect square in this list. One required 8 iterations to
achieve this. While the process will always terminate in a perfect square, the method 1s
inefficient. We have n=23=12%-121=12% 11> =(12-11)-(12+11) =1-23 verifying that the

integer 23 is prime.

Let us next apply the Lucas-Lehmer Test for primality on the Mersenne
numbers M, =2° —1=8-1=7,M, =2" —1=128-1=127,and M, =2" —1=2048—1=2047.

For M, =7,u(1)=4 and u(2)= (42 ~2)m0d7 =0. Hence M, is indeed prime. See FIGURE 20

below:
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FIGURE 20 (Lucas-Lehmer Test on M, = 7.) FIGURE 21 (Lucas-Lehmer Test on M, =127.)

For M|, =2047, consider the calculations in FIGURES 22-23 below:
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FIGURE 22 (Lucas-Lehmer Test on M, =2047.) FIGURE 23 (same as FIGURE 22)

For M,, =2047, p =11= p—1=10and after 10 steps we do not obtain an output of 0 so
that M, is not prime. The Lucas-Lehmer Test is not very efficient for larger values of M ,and

better tests must be devised. The GIMPS (Great Internet Mersenne Prime Search) is currently a
very active area of number theory and one can join. Keep in mind that “prime does pay.” The
discovery of the thirty-eighth Mersenne prime netted the researcher $250,000!

We next consider the factorizations of Fibonacci and Lucas numbers. In order to generate the
first of these sequences, recall the recursive definition of the Fibonacci sequence,

FIB(N) defined as follows:

FIB(1)= FIB(2) =1
FIB(N)= FIB(N —2)+ FIB(N ~1) for N 23.

On the HOME SCREEN, we generate the Fibonacci sequence. We initialize the first two

terms typing 1 each time followed by ENTER. On the third line, type ans(2)+ans(1), then

ENTER. Generate new terms of the sequence by consistently pressing ENTER.
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We view the initial twenty-eight terms of the Fibonacci sequence in FIGURES 24-27 below:
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FIGURE 26 (FIB(15)- FIB(21)). FIGURE 27 (FIB(22) - FIB(28)).

Let us next generate the initial eight Fibonacci primes. We proceed in the same fashion we
generated the terms of the Fibonacci sequence, except we utilize the factor option. See FIGURES
28-31 below:
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FIGURE 28 (FIB(1)- FIB(7))factored. ~ FIGURE 29 (FIB(8)— FIB(13)) factored.
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FIGURE 30(FIB(14) - FIB(19)) factored FIGURE 31 (FIB(20)—- FIB(25))factored.
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The first number 7/99 at the bottom of the screen in FIGURE 28 indicates that the 7" entry in the
Fibonacci sequence is 13. One can save up to 99 previous calculations in the history. See
FORMAT which is F1 9. The initial ten Fibonacci primes are as follows:

FIB(3)=2, FIB(4) =3, FIB(5) =5, FIB(7)=13,FIB(11) =89,
FIB(13) =233, FIB(17) =1597, FIB(23) = 28657.

Although there are infinitely many prime numbers as well as Fibonacci numbers, it remains open
as to whether there are infinitely many Fibonacci primes. It is known that with the exception of

n =4 (where FIB(4) =3, a prime), every other Fibonacci prime arises from FIB(#)such that »

is itself prime. The converse is not valid; 19 is prime but FIB(IQ) =4181=37-113 (composite).

In order to generate the Lucas sequence, recall the definition:
LUC(1)=1,LUC(2)=3
LUC(N)=LUC(N-2)+LUC(N -1) for N 23.

In a manner analogous to the Fibonacci sequence in the previous problem, we generate the initial

twenty-eight terms of the Lucas sequence on the HOME SCREEN in FIGURES 32-35 below:
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FIGURE 32 (LUC(1)-LUC (7)) . FIGURE 33 (LUC(8)- LUC(14)).
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FIGURE 34 (LUC(15)-LUC(21)). FIGURE 35 (LUC(22)-LUC(28)).

We next generate the first ten Lucas primes. See FIGURES 36-39 below:
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FIGURE 38 (LUC(15)- LUC(21))factored. FIGURE 39 (LUC(22)- LUC(28)) factored.

Hence the first ten Lucas primes are as follows:

LUC(2)=3, LUC(4) =17, LUC(5) =11, LUC(7) =29, LUC(8) =47,
LUC(11)=199, LUC(13) = 521, LUC(16) = 2207, LUC (17) = 3571, LUC (19) = 9349.

Conclusion: Technology enables us to explore a world of possibilities. In this session,
the role played by technology in three diverse number theoretic settings was addressed

in the spirit of discovering exciting mathematical insights in conjunction with technology.
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