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Abstract
Numerical analysis courses always have a unit on polynomial interpolation and approximation, although much of this

topic is anticipated in precalculus, calculus, and linear algebra courses. We will explore the features of the TI-89 that make it
an excellent environment to explore polynomials at all of these levels.

Basic Operations with Polynomials

[t is nice conduct classroom demonstrations with a somewhat random example so that you clearly show that these techniques
apply to all polynomials. The TI-89 has a command randPoly(x,n) that gives a polynomial in the variable x of degree »
that has coefficients that are random integers between —9 and 9. [Warning: 1 thought T was clever once asking students in
a Calculus 1 class to issue this command and turn in an assignment about the resulting polynomial. I got only two different
polynomials: (1) about a third of the class did an example with me in class and handed in the “second” random polynomial
and (2) the rest handed in the “first” random polynomial to come out of a default calculator. The fix is to first ask them to enter
their individual student identification number as the RandSeed and then proceed to anything else random.]
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I try to model good calculator habits by almost always looking at a table before setting the viewing window. For a fifth-degree
polynomial with single digit coefficients, no “Standard” viewing window is ever appropriate. “ZoomFit” is not helpful either
because it does not help us select the appropriate x-range. Here after scrolling through the table above, we settle on =2 < x < 2.

Fiv | Fz=] Fir| F2=| FZ FY FEv [ FBw [F7e31 e

T oo ls|2iam| Tools|2oom|TEacs|Redrarh{Math|Draw|Fenf:- o-:-?. Zwm Tr' J-"t F&Srar-h Math Dr-:lw P

o = T 7
=

/ /
grin= -3, b i i ks f
dmax=50. 3 — - P S o
Gszi=lo: J — / [
,|'l axlmum II.'Ierlr:-c.t,ic-r'u
xc:-1.2312 ycil8. 226 ®oi T FB9E95 | wcil4,8422
FIAIN FAL AUTD FUNC FIAIN m- AUTD FURE FRIN FAL AT FIRC

The interactive F5 MATH graphical commands allow us to find a local minimum, a local maximum, or a point of inflection.
From the graph (and our scroll through the table), this particular polynomial

y1(x) =4x® +dx* — 27 —Tx+8

seems to have only one real root. There is a very nice free Polynomial Root Finder application that will numerically compute
all of the real and complex roots for this polynomial.
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We can try to factor a polynomal (such as our original random fifth-degree polynomial). Note that in Auto mode, it moves to
numerical factoring when it cannot factor in exact arithmetic.
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(4, 5+ 7.13965) (%2 - 1.59982 % + . 794668) (22 + 814904 3 + 1, 41003
8 cFactor{ulix), < )
CEEZSOE (4. cx + FLL39EE) (4. w0 + 319963 — 1LSFIET 1004, xw + -3.19963 + 1.57387 1)
e x4+ 162981 — 4. 46141 4004, s+ 162981 + 4, 46141 -4)

To truly appreciate the computational issues for accurate root-finding, many numerical analysis textbooks mention the Wilkin-

son polynomial of degree 20
glo)=(x—=1){x=2)(x=3)-- - (x = 19)(x—20)

and how sensitive this is to perturbations in the coefficients. For more details see Wilkinson [2]. In particular, changing the
integer coefficient of x'3 by a very little amount causes the roots to change dramatically (and many become complex). This
makes a good project (where you can use the symbolic capabilities to expand to see the specific coefficients of the Wilkinson
polynomial).

Lagrange Interpolation

Suppose that we are given a set of distinct nodes {x;,i=1,...,n+ 1} with x; < x3 < -+ < x,,1 and also a set of dara
values {y;, i =1,....n+ 1}. Then the Lagrange interpolation problem for the data pairs {{x;, v;),i=1...., n+1}isto find a
polynomial p € 22, satisfying

plx) =y, i=1,...,n+1.

All introductory numerical analysis textbooks (see Kincaid-Cheney [1]) present this topic and prove existence, uniqueness,
and approximation properties for such interpolatory polynomials. Of course high school students learn how to do this in the
case n = 1 (finding a linear polynomial passing through twe data pairs).

Existence could be established by proving properties of the following matrix equation.
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Here the unknowns ¢; are the traditional coefficients for a power basis. While the TI-89 can certainly handle these matrix
problems, the Vandermonde matrix in the above problem is well-known to be very ill-conditioned, particularly for higher
degrees. The recommended method is to consider the Newron form

plx)=ap+a (x—x))+ar(x—x)) (x—x2) +-Fa, (x—x;) (x—x2) - (x—x,)

where the coefficents a; are efficiently computed using divided differences. Here is a TI-89 program coef to compute these
coefficents and another TI-89 program eval to efficiently evaluate the resulting polynomial using nested multiplication. In
the programs, the /ist structure is used to pass the data to the programs and to return the coefficents.
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Here is an example where polynomial interpolation is not so good. Consider the following table of data values.

| 6 ] -81.091 | -81.058 [ -80.818 | -80.387 [ -79.789 |
[T] 48|72|96|120|144\

1 was given this “real data” by a worker at NASA’s Goddard Space Flight Center. In the table, 6 represents the geodetic latitude
of a satellite in degrees and T represents the time in seconds. He wanted to approximate the time T when the geodetic latitude
was —80 degrees. Thus he had found the fourth-degree polynomial p(@) interpolating the data in the table, and he evaluated
p(—80) to get the estimate of the time. Now most of us would “eye-ball” the table and get a rough estimate that the answer
should be at about 132 seconds. Imagine the disappointment of the NASA worker when it turns out that p{—80) a2 304.
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If we plot the function p(8) in a window —81.25 < 08 < —79.75, 0 < T <350, we see that while the data seemed to indicate
a strictly increasing situation. the interpolating polynomial is definitely not always increasing. There are many alternatives
here that seem to give us a more reasonable result. Linear interpolation (with just the last two columns in the table), quadratic
interpolation (with the last three columns), and even cubic interpolation (with the last four columns) all give evaluations that
fit our expectations better. We can also reverse the roles of 8 and T, seeking a fourth-degree polynomial g(7) that interpolates
the data (with rows interchanged), and then we need to use something like Newton’s method to solve the equation ¢(7) = —80
for the desired time.

We see below the polynomial of degree 6 (on the left) and the polynomial of degree 10 (on the right) that interpolate the Runge

- = ; . . ; _ :
function f(x) = (_‘.2 + 1 ) at equally-spaced values on the interval [—35, 5] (including the endpoints). This gives another visual
demonstration of how things can go wrong with approximations derived by higher degree polynomial interpolations.
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Taylor Polynomials

Calculus students find the tangent line approximation for a function at a point a, which is simply a linear polynomial which
matches the function value and the derivative value at a. More generally Taylor polynomials approximate functions by match-
ing the function value and several derivative values. Numerical analysis students study Hermite interpolation using polyno-
mials where they match function and various derivatives of that function at one or more points. The TI-89 has many symbolic
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and graphical features that help explore all of these topics, no mater what the level of the course. Here we look at Taylor
polynomials about x = (0 for the same Runge function.
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Polynomial Regression

Linear regression shows up in many courses. In a low level course or a basic statistics course, the calculator is simply
used as a tool (a black box) to compute a linear polynomial which approximates a set of data in the least squares sense.
Typically multivariable calculus courses derive the formulas for linear regression as an optimization problem in two variables,
and linear algebra courses develop linear regression as an orthogonal projection. Least-square-error approximations can use
higher degree polynomials, and some of this is provided in the Stats/List Editor application of the TI-89. Here we consider
various regressions for the NASA data above.
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The point is that the TI-89 is a wonderful tool to explore many questions about polynomial interpolation and approximation.
The fact that we can quickly get a visual representation of the data, the functions, and the resulting polynomials allows us to
move on to the more difficult questions such as what should be be using? in many practical situations.
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