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Abstract

We introduce a set of twenty learning labs for a linear algebra course. These
labs are designed in Maple and all calculations are done in an algorithmic fash-
ion using existing procedures in the Maple kernel. Each lab has an introductory
pre-lab component explaining the concept. The lab portion beging with a warm-
up problem followed by further computations in Maple. Experiential learning
is at the heart of these labs since students explore linear algebraic concepts
through the use of a computer algebra system. They work in groups of two
or three, each with their own laptop, so that these learning centered clusters
are able exchange ideas in the spirit of cooperative learning. In this article,
we will discuss the raison d’étre of lab design and explore one of them. These
interactive learning labs are easily adaptable with minor modifications to fit
most introductory linear algebra courses.

1 Introduction

There are few courses in mathematics which highlight the connections mathematics
has to other disciplines. Linear Algebra with Applications is the best example of
such a course. IFor mathematics majors, this is the cowrse that first exposes them
to abstract prootf, and for science and engineering majors this course offers necessary
mathematical tools that are useful in various applications. Linear Algebra is also a
course that is required for education majors as well as economics and finance ma-
jors. The purpose of this article is to introduce a collection of twenty learning labs,
purposefully designed, to create a learning environment for a first course in Linear
Algebra to become a conduit that channels students into various disciplines which
entail a firm mastery understanding of mathematical objects.

Properly implemented pedagogy will facilitate a pervasive and smooth dissemina-
tion of mathematical concepts in redesigned mathematics courses. It is then reason-
able to raise a question about appropriate pedagogical techniques for such redesign.
For the purposes of our redesign, we will make a strong case for experiential learning
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delivered on a technology platform (learning labs) and demonstrate that these peda-
gogical techniques are the corner stones upon which new and improved linear algebra
curriculum should be implemented.

Most of our students who complete the first course in Linear Algebra follow it
with a senior level Theory of Matrices course. It has been a long standing practice to
prepare students from the very beginning to succeed in both these courses. With this
philosophy in mind, we have adopted the David Lay text [7] for the Linear Algebra
course, due mainly to its treatment of linear transformations at the very onset and
for the excellent collection of application problems in it. We have not had the same
success with a traditional text for the Theory of Matrices course. To remedy this
situation, we have written an electronic textbook, a truly interactive PDF document,
the latter half of which could be used as a companion text for the second course.
The first six chapters mirror the material covered in Linear Algebra and the next six
chapters cover the extended topics in matrix theory. The e-book gives students the
advantage and flexibility in choosing material for reading and cross referencing at the
convenience of a mouse click. The e-book is offered to students in both courses at
no cost. In the redesign of our Linear Algebra course, we added two instructional
components to the existing curriculum.

1. Twenty mini-videos that guide a student through a short activity that traces a
pathway to a concept that will be covered in a subsequent Learning Lab.

2. Twenty Learning Labs in Maple to be completed in class following the day after
the students have previewed the associated mini-video.

With the advent of these two pedagogical enhancements, we envision the following
consequences. Having continued access to the mini-videos will facilitate self-paced
learning, whereby a student can complete the assignments at a time when optimal
learning has occurred. The Learning Labs will simulate interactions within a normal
classroom environment creating a sense of esprit de corps among lab partners [5].
A major implication of these advancements is that, Linear Algebra will become a
valuable mathematical tool for students and not a barrier that they need to overcome.
At the heart of it all is experiential learning. The experiential learner, according to
David Kolb [6], goes through a cyclic learning process which recurs in stages. An
ideal learner cycles through these learning modes, and never actually settles for a
single orientation. Because we have all types of learners in our classroom [5], who are
most likely not ideal learners, we must use pedagogical practices that are suitable for
all learners.

2 Experiential Learning through Cooperation
Experiential learning is a theory that advocates the idea that students learn from

experiences. Effectual learning occurs within a cooperative learning framework that
encourages the exchange of ideas. Experiential learning theory offers a foundation
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that is soundly based in a cognitive process that balances a students’ education, per-
sonal development, and work. The experiential learner, according to David Kolb [6],
goes through a cyclic learning process that develops in four stages. First the learner
encounters concrete experiences (CE), followed by reflections and observations (RO),
which directs the learner to abstract conceptualization (AC), and finally ends with ac-
tive experimentation (AE). At which point, the learning cycle goes back to concrete
experiences etc. The model that uses RO (+ x), AE (- x), CE (+ y), and AC (- y) as
axes, is known as the Kolb Learning Cycle. A learner in CE, deals with experiences
preferring an intuitive approach to problems, compared to a more systematic and
scientific approach. They relate well to people and are comfortable in real-life situa-
tions. A learner in RO, looks for meanings in situations through careful observations.
They reflect on these meanings and seek to understand their implications. A learner
in AC, focuses on logical understanding and concentrates on theoretical approaches
to problems. Finally, a learner in AE, focuses on experimentation as opposed to
reflective understanding. Further analysis gives us the following definitions.

e In the (AC,AE) quadrant is the converger whose dominant learning styles are
abstract conceptualization and active experimentation. They do well in prob-
lem solving situations that have a single correct answer (physical sciences and
engineering)

e In the (CE, RO) quadrant is the diverger whose dominant learning styles are
concrete experience and reflective observation. They have the ability to generate
alternate ideas (humanities and liberal arts).

e In the (AC,RO) quadrant is the assimilator whose dominant learning styles
are abstract conceptualization and reflective observation. An assimilator will
integrate observations and ideas into a theoretical framework (mathematics and
basic sciences).

o In the (CE,AE) quadrant is the accomodator whose dominant learning styles
are concrete experience and active experimentation. They adapt to changing
circumstances and are action oriented (business and technical fields)

Because an ideal learner cycles through each of the learning modes and never
actually settles at a single orientation, one should be cognizant of different learning
styles when designing components of the learning labs.

APOS theory was developed to understand the ideas of reflective abstraction
(AC,RO). APOS model for the construction of conceptual mathematical knowledge
describes how Action becomes Process that can be viewed as Objects, as part of
Schemas (Figure 1). Various instructional treatments such as corporative learning,
ACE (Activity, Concept, Exercise), ICE (Instruction, Concept, Exercise), and pro-
gramming languages (ISETL) have been successfully used in the past [1], [2], [3]. An
Action is a change that an individual makes in a mathematical context requiring
precise instructions to perform. A Process takes place when the individual begins
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to have control of the concept. An Object is constructed from a process when the
individual becomes aware of the entire concept and understands that actions and
processes can act on the concept. A Schema is when objects and processes from
more than one area can be combined in more than one way.
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Figure 1: Kolb Learning Cycle and APOS quadrant

In the design of our learning labs we integrated the findings of Kolb Learning
Cycle and APOS theory. Therefore, cooperative learning and the ACE cycle were
our basis. We decided to employ a modified version of the ACE cycle, namely, the
ACEL? cycle. Here A stands for activity - the mini-video students use outside the
class and before the lab, C stands for concept - discussed in the mini-video and in
class prior to lab, E is for exercises contained within the lab, and L? denotes the
learning lab.

3 Learning Labs

The Learning Labs have the advantage being flexible enough to fit into existing topics
in Linear Algebra. A handful of labs involve application topics from other disciplines.
The courses are taught in a classroom equipped with laptop computers that can be
arranged in a moments notice to simulate a laboratory environment. Specific labs
are based on concepts, often extending ideas of matrix theory, and are designed using
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Maple. There are several advantages to using Maple. A primary collection of these
are listed below. .

Interface: The Maple interface allows students to enter text and write mathemat-
ical statements on the same document. Features such as editing, examples, and the
help menu allows students to experiment and explore during the lab.

Computation: Some of the more laborious procedures, such as row-reducing or
finding an inverse of a given matrix, can be done efficiently, saving time for conceptual
understanding. Instead of depending on the facilitator to dance around the table
every few minutes to verify calculations, students can do their own checking and be
confident knowing the mathematics they produce is correct.

Visualization: This is the most striking feature that enables students to move
between different phases of APOS theory, weaving in and out of differing levels of
understanding.

An outline of the topics covered in the Linear Algebra course is given in Table 2.
The topics marked by % have an allied learning lab.

1. Linear Equations 2. Matrix Algebra 3. Determinants
* Systems of linear eqs
Y Echelon forms
Vector equations

Matrix operations

. e lnverse of a matrix Intro. to dets.
Y The matrix eq. Ax = B . .
. : Y Invertible matrices % Prop. of dets.
* Solutions of linear sy. . . i
S Linear independence % LU decomposition % Cramer’s rule
= Y Applications

% Linear transformations
Y Matrix transformations
4. Vector Spaces 5. Eigenvalues 6. Orthogonality
Vector spaces & subsp.

Y [nner products
Orthogonality

Y Null space & column sp. . .
Y Eigenvalues & eigenvec.

Linear indep. and bases
* . * Characteristic eq.

% Dimension of a vector sp. % Applications

Y Rank

Table 2: Topics of Learning Labs

3.1 Sample Labs

In this section we will explore one sample learning lab. A conscious choice was
made to include a concept that extends beyond the usual topics covered in a typical
Linear Algebra curriculum. The lab (on Circulant Matrices) can be categorized as
one requiring only an Action level of manipulation. However, the resulting conclusion
is non-trivial. Certain details of the lab are left out for brevity. Other labs such
as the one on Schur’s Theorem is on the Action and Process level of understanding.
Schur’s Theorem describes a fundamentally important fact for any matrix. The lab on
unitary matrices brings together many ideas of matrix theory, exemplifying the deeper
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levels of learning connected with Objects and Schema in APOS theory. Sample labs
can be accessed at http://www.personal.kent.edu/ "akasturi/linalglabs.html. These
interactive learning labs are easily adaptable with minor modifications to fit standard
introductory Linear Algebra course.

Circulant Matrices

NAME: PARTNER: Linear Algebra - Lab 11

> restart :with(plots) : with(linalg) :

What are Circulant Matrices?

A matrix 4 € M (R) is called a circulant matrix if it has the form

T T SN A
n al a2 """ yeg B
an—l a, al """ A
213 8.4 3.5 al 32
3.2 a3 34 an al

Circulant matrices appear in problems in physics, image processing, probability, numerical
analysis, and number theory. Most matrix-theoretic properties related to circulant matrices can be
resolved concretely. This in itself places circulant matrices as objects to be studied for deep
understanding. Our goal in this lab is to prove that two circulant matrices commute.

Rewriting Circulant Matrices

Our first goal is to understand how to rewrite circulant matrices using the powers of an
elementary permutation matrix that we encountered in the course.
Let us denote the 3 x 3 permutation matrix (which is also circulant) as ¢.
010
> g=|001
100

Start with the general 33 circulant matrix 3.
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First let us compute powers of ¢.

> &

Look carefully at the structure of €, ¢?, ¢*. Write the matrix g as a linear combination of C, %, ¢ .
Write your answer below.

Next let us do the same for a 4 x 4 matrix. Start with the standard 4 x 4 permutation matrix £ and a
general 4 x 4 circulant matrix £,

0100 abcecd
T 0010 . dbac
0001 cdba
1000 acdb
Compute powers of E,
>E E F

Write the matrix F as a linear combination of E, £2 E, E*. Write your answer below.

General Result

Lemma A matrix 4 can be written in the form 4 = z p
k=0

- l(ff iff A 1s circulant. Here ¢ refers to

the n x » permutation matrix.
Proof:

Circulant Matrices commute

Use the Lemma above to prove the following Proposition.

Proposition Any two circulant matrices commute.
Proof:

Example

Verify the Proposition using the matrices P, 0 given below.

123 abec
> P=|312| Q:==|cab
231 bca

Useful Commands and References

MatrixMatrixMultinly Davis, P., I., Circulant Matrices. John Wiley & Sons, Inc., 1976
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4 Conclusions

Pedagogy based on Vygotskian theory [8] places the learning of mathematics as a
conceptual endeavor. The Learning Labs for Linear Algebra designed in Maple cap-
ture the essential ingredients of experiential learning and APOS theory. Teaching
conceptual knowledge first leads to the acquisition of procedural skill. However, con-
ceptual and procedural skill are to be treated as part of a single cognitive schema.
We have introduced the ACEL? cycle to justify the use of learning labs to advance
students to a higher level of cognition. Measurement and comparison of a Conceptual
Performance Index (CPI) and Skill Performance Index (SPI), as done in [4], will be
investigated in the future for the redesigned Linear Algebra courses.
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