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Introduction: The Critical Role of Prototypes in Mathematics

At a recent conference we asked participants to quickly sketch examples of mathematical
objects commonly encountered in courses they teach. As participants drew triangles,
rectangles and quadratic functions, the vast majority of university mathematics faculty
drew “prototypes” of each: an equilateral or right triangle; a rectangle with two longer
sides parallel to the x-axis, and the function y = x*. Rosch and Mervis (1975) write about
prototypes as “those members of a category which most reflect the redundancy structure
of the category as a whole” (p. 602). Alternatively, Schwartz and Hershkowitz (1999)
describe prototypes as “the members of a category that have a set of features most highly
correlated with the features of other members” (p. 363). While few would dispute
instructional advantages associated with prototypes in the teaching and learning of
mathematics, prototypical thinking encourages students to see tasks and concepts in
predictable ways, too often obfuscating more creative alternatives. In this paper, we
provide examples of ways in which we have exploited the tendency of students to think
prototypically to deepen their understanding of various mathematical concepts. Through
careful modification of routine classroom examples, we present our students with
mathematical scenarios that yield non-prototypical results. As the examples illustrate,
dynamic geometry software [DGS] has played a pivotal role in the creation of such tasks.

The Fence Problem: Re-envisioning a Prototypical Optimization Task in Calculus

In calculus, students routinely encounter prototypical functions and tasks - the box
problem, related rates, and standard optimization problems to name but a few. Fencing
problems are familiar optimization tasks to most calculus teachers. Variations of the
following example are commonplace in any calculus text.

A rectangle plot of land is to be enclosed using exactly 100 feet of fencing. What
dimensions will maximize the rectangular area?
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Figure 1. Sketch of a parabola, generated b
perimeter,

Yy prototypical fence problem with a fixed

Because such solutions - namely, squares and parabolas -
come to expect similar solutions in all problems they enco
their solutions may be considered “prototypical.”
problem slightly, new tasks are generated that enco
they explore the intricacies of their solutions.
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solution initially appears (see Figure 2).
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Figure 2. On the left, a non-prototypical fence problem with a fixed area; on the right, a
graph of the non-prototypical function, P = 2(x + 18).
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Not surprisingly, students "see what they want to see," namely a parabola similar to the
previous task's solution. However, with more thoughtful dragging, students soon realize
that the function related to this task is not a prototype. Indeed, the plot of perimeter with
respect to width is not fitted with a parabola. The unexpected result associated with the
task encourages class discussions of the underlying algebra of the function as students
rigorously verify conjectures generated with technology. For instance, students verify
conjectures by using the area formula of a rectangle and solving for one of the sides,
substituting  the resulting expression into the perimeter equation yielding

18
P=2(x + ?)

Geometrical Probability Tasks: A Prototype and an Unexpected Result

In Fostering Geometric Thinking, Driscoll et al (2007) discusses instructional advantages
and disadvantages associated with prototypes in the study of geometry. In particular, he
notes the tendency of students and teachers to look for regular shapes when solving
problems, since a wide variety of tasks involve such shapes in their solutions. Consider,

o

for instance, the Triangles from Altitudes task, a classic geometric probability problem.

Triangles from Altitudes: A point P is chosen at random inside an equilateral triangle.
Find the probability that the three perpendiculars from P to the sides of the triangle can be
rearranged to form a triangle.

With DGS and rudimentary knowledge of the triangle inequality, students can construct a
dynamic sketch to informally locate points within an equilateral triangle that yield
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perpendicular segments that form triangles. The set of all desired points in fact forms a
prototypical shape, namely, a midpoint triangle with area equal to 1/4 the original (see
Figure 3).
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Figure 3. As students drag point P in the triangle on the left, the corresponding point is
traced in the translated triangle on the right.

The solution to the Triangles Jrom Altitudes task is prototypical in the sense that its
solution may be represented as a familiar shape, namely an equilateral triangle.
Moreover, the numerical solution is a familiar fraction, namely 1/4. For these reasons, it
is interesting to pose the Acute Angles task as a follow-up.

Acute Angles Task. A point P is chosen at random inside an equilateral triangle ABC.
Find the probability that one of the triangles ABP, APC, and PBC is acute.

While also a geometric probability problem (involving an equilateral triangle, no less),
the solution to the problem is unexpected. Tracing points within the equilateral triangle
that generate an acute angle may be modeled with DGS in much the same way as in
Figure 3. In our experience, many students who solve these tasks simultaneously identify
the complement of the solution set as an equilateral triangle; despite the apparent
bounding arcs generated by the sketch (see Figure 4).

Figure 4. As students drag point P in the triangle on the left, the corresponding point is
traced in the translated triangle on the right when at least one of triangles ABP, APC, and
PBC is acute.
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The solution, in fact, generates a Reauleaux triangle. Understanding of this result
involves a deeper exploration of the task than blind dragging alone. Knowledge of
Thales' Theorem ~ namely that a triangle inscribed in a semicircle forms a right triangle -

1
is helpful to determine the actual probability, —‘/i‘(/;—ﬁ)] ~.59.

Conclusion

At the most naive level, students recognize mathematical entities as a collection of
familiar examples. As they learn mathematics, students construct prototypes of
mathematical objects and problems that in many instances are productive. However,
prototypical thinking can interfere with creative thought. Teachers and textbooks
unwittingly present prototypes to students without providing alternatives. In this paper we
expanded on two familiar textbook examples, transforming them to tasks that generate
non-prototypical solutions. If we wish to engender creativity and true problem solving in
classes, we must present such examples with our students.
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