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1 Introduction

At the University of Rhode Island, we offer a senior level undergraduate course in
difference equations, which runs every Spring semester, in addition to graduate level
courses and seminars. Our undergraduate course is attended by an average of 30
students that come from natural sciences, mathematics, engineering and even social
sciences. A key activity of the course is a research project that the students must
carry out and present to the class at the end of the semester. One of the challenges
the instructor of difference equations faces is that of the generating enough problems
with interesting characteristics for a relatively large class.

Here we are concerned with invariants for difference equations. The theory is based
on the existence of an expression, called an invariant or first integral, that remains
constant along solutions of a difference equation and which reveals much about the
behavior of solutions of the equation.

We discuss here the QRT Algorithm for generating large families of difference
equations that have invariants. We begin in Section 1 with examples of difference
equations and invariants. Then in Section 2 we present the QRT Algorithm with an
example.

First Difference Equation with invariant. Theon of Smyrna (ca. 100) studied
what appears to be the first difference equation with an invariant. It is at the heart
of his method for approximating v/2 with rational numbers. Theon of Smyrna’s
approach is as follows. Choose z; > 0, y; > 0, and set

Tz = I+ Y2 = 23}1+y],
T3 = T2+ Yo Yo = 223+ Yo,

Tnt1 = Ty + Yn, UYnt1 = 23"11. + Un

For example, 21 = 1 and 3, = 1 give (1,2), (2,3), (5,7), (12,17),.... At first glance,
the numbers look unremarkable. However, one can easily verify that 42 —2 22 = (—1)"
form =1,2,3,.... Let us define the function (called invariant)

I(z,y) = (y* —22° — 1) (y2 — 22 + 1)
Then I(2,,4,) = 0 and
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Since Zp41 > 22, (so in particular z,, — o), we have that knowledge of the invariant
allows us to conclude y,,/z,, — V2.

Using an invariant to approximate vN. For 2y > 0 and 3, > 0, consider the
“arithmetic-harmonic mean” system of nonlinear difference equations:

Ty +y 2
3)7L+1 = - 9 ”s Ynt1 = 1 1 3 n=051127"' (1)
'/L.’H, y'n

It can be shown that {z,} and {y,} are monotone and bounded, thus they con-

verge, say limz, = a and limz, = b. Furthermore, upon taking limit in either

equation of (1) we obtain a = &T*b, from which we conclude a = b. But the actual

values of a and b cannot be derived directly from (1). Let us consider the product
Tn41 Yn+1-

Tn FUYn 2 _ FntUn 2Znyn
2 L + L o 2 In + ?)‘:n,

TptllYn+1 = = Tnln (2)
which shows that the product x, v, remains constant as n varies in N. If we define
I(z,y) = zy, from equation (2) we have I(zpy1,Yns1) = [ (Zn, ), 7 =0,1,2,....
In particular, (2, y,) = (20, 1), that is, , yn = 291y. Combine with limz,, = a
and lim ¥, = a to obtain a® = zy,. Thus the limit a of {x,} and of {y,} equals the
product of 2y and yy. For example, set 2y = 1 and yy = 2, so that N =a®> =2.-1=2.
Then, both z,, y, — V2 &~ 1.41421356237309504880 . . . where the convergence is
order two.

i Un Error
1. 2. 6 x 107!
1.5 1:.33333333333333333333 8 x 102

1.41666666666666666666 1.41176470588235294117 2 x 1073
1.41421568627450980392 1.41421143847487001733 2 x 107°
1.41421356237468991062 1.41421356237150018697 2 x 10712
1.41421356237309504880 1.41421356237309504880  €nachine

S W N == O3

An example where the invariant is the quantity to be approximated. For
ag > 0 and by > 0, consider

ay + by
Qs = — 5 Z by =Vanb,, n=012,... (3)

System (3) is called the “aritmetic-geometric mean iteration of Gauss and Legendre”
One can show that a,’s and b,’s are monotone and bounded, and that they converge
to the same limit. The common limit is known as the arithmetic-geometric mean,
usually represented with the symbol AGM (ag,by). By using some transformations
one can show that the complete elliptic integral of the first kind

Hat)= | . & @)
a, ) = = .
o Valcos?t + b2sint

117



satisfies I(@ny1,bni1) = I(@n,by) = -+ = I(aog, by), which means that I(a,b) is an
invariant of Equation (4). Gauss’ formula is also valid. It is: I(ag, by) = FAG(ao, by).
That is, one may use a,, and b, to approximate the elliptic integral I(ag;by).

Definition of Invariant (Autonomous Case). Let f : D — D be a continu-
ous function, where D C R¥. A nonconstant continuous function I : D — R is
an invariant for the difference equation X,y = f(x,), n =0,1,..., xo € D if
I(f(x)) = I(x), for every x € D.

Example: Lyness’ Equation. For A > 0 consider

A+
P == ” ton=12...; 23>0 2,>0 (5)
L —1

The equilibrium point is obtained as follows:

A+, _ A+ _ 1++/1+4+4A
Byl = . — = =% B — 5
L —1 okt

The standard way of studying stability of the equilibrium is to check whether the
roots of the characteristic equation of a linearization of Eq. (5) about the equilibrium
are inside the unit disk. In this case the characteristic equation can be shown to be
A —1X+1=0. An invariant for equation (5) is

Tlm, yl = (1+:—_> (1 + %) (A+z+4+y)

The above invariant may be obtained by hand calculations, or by invoking a special
function of the software package Dynamica ( [1], [2]), written in Mathematica language
by the authors of this note. By visualizing the invariant I one may conjecture that it
has an isolated minimum attained at the equilibrium point of Eqn. (5). In fact, one
can prove this either by hand calculation or by using Dynamica, see [1]. This fact,
in view of Morse’s Lemma [6], implies that all solutions to Eqn. (5) belong to the
family of closed simple curves, which shows that all solutions are bounded and that
the equilibrium is stable, see [1].

In general, students may use an invariant to investigate and establish key proper-
ties of difference equations, such as

e boundedness of solutions (i.e., z,, < M).
e persistence of solutions (i.e., 0 < § < x,).
e stability of the fixed point T.

e the limiting value of solutions {x,} when they converge.
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2 Generating difference equations with invariants

The following theorem gives a way of generating many difference equations that have
invariants (see [3], [4], and [5]).
The QRT Theorem Let A and B be 8 by 3 real symmetric matrices, and let

a? y? f(x)
=1 w |, we=1 m ], gly) | =ld%) = (Bx)
1 h(z) )

Then, for xy >0, xy > 0, the difference equation

yAx T Ag'd
yiBx Y Bijyizd

e flan) — Za_1 9(20)
" g(q’n) — Ip—1 h(:];ra,)

has the invariant [(z,y) =

An interesting fact about this result is that the resulting equation and the correspond-
ing invariant depend on twelve parameters, namely the entries of the input matrices
A and B. A particular choice of A and B gives Lyness’ equation, for example. The
formula given in the QRT Theorem is easily implemented in any computer algebra
system. Thus a large collection of examples may be generated without effort for
teaching purposes. The following is an implementation in Mathematica.

INPUT: A, B (real symmetric 3 by 3 matrices)

ORTSymm[A , B_] :=
Module|[{£f1l, £2, £3, grteqn, invariant},
{£1[x_], £2[x_], £3[x_]} = Cross[A.{x", x, 1}, B.{x?, x, 1}];
k  qgqrtegn =
X[n+ 1] == 8implify[(£fl[x[n]] -x[n-1] £2[x[n]]) /
(f2[x[n]] -x[n-1] £3[x[n]]}];
invariant =
simplify[(A-{y*, v, 1}).(x°, x, 1}/ (B-{y", v, 1}) . {x*, =, 1}];
Return[{QRTegn » qrtegn, PQRTInvariant - invariant}];
1;

Here is an actual output of a Mathematica session, where a difference equation
and corresponding invariant are generated from symbolic input.

abc 000
ans:QRTSyn'm[(b 0 e] [o 1 o]
c e £ 0 0 0

e {QRTeqn-—-)x[1+n] = (f+ex[n] +ex[n]?) 7 (x[-1 +n] (c +bx[n] +ax[n]?)),

1
ORTInvariant - — (f +ey+cy’ +x (e +by?) +x% (c+v (b +ay}))}
x¥
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Conclusion. Invariants are a powerful tool for analyzing either local or global be-
havior of solutions to difference equations, and in many cases they completely reveal
the global character of solutions of these equations, such as convergence to the equi-
librium, boundedness, stability, existence of periodic solutions, etc. In this paper we
presented a method of creating a large family of rational difference equations together
withe their invariants, which can be used in a classroom setting for teaching or for
research purposes as well.
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