USING BOARD GAMES OBJECT-ORIENTED PROGRAMMING FOR
TEACHING MATHEMATICS

Alexander Vaninsky,
Hostos Community College, CUNY
500 Grand Concourse, Room B 409, Bronx, NY 10451, USA.
email: avaninsky(@hostos.cuny.edu

Introduction. Successful teaching and learning mathematics comprises two
indistinguishable components: mathematics relation to the real world and mastering
internal logic of mathematics as a scientific discipline. Importance of the first component
is out of question; for instance, Principles and standards for school mathematics (2000)
stress the development of applications skills in several rubrics. It is less mentioned that
understanding mathematics per se, as an abstract science, is also of crucial importance,
because it underlies mathematics applications skills.

Contemporary school and college programs are designed so that most of students, for
example, remain unaware of the nature of real and complex numbers, do not perceive
vectors and polynomials adequately, and have no or very little knowledge about
mathematical proofs. This situation restricts their capability to recognize same
mathematical categories presented in different forms and surf easily among them. Thus,
students could not fully grasp and use an idea that vectors in plane, complex numbers and
fractions are just ordered pairs of real or, correspondingly, integer numbers equipped with
different operations of addition and multiplication. It should be noted that general
understanding of the nature of abstract mathematical objects is practical, because it forms
a basis for better learning of more comprehensive topics in mathematics.

Seeking a way of teaching abstract mathematical topics using "tangible" tools author
have found that object-oriented programming of board games is a convenient one. This
paper presents some examples and demonstrates, in particular, independence of
mathematical reasoning from the nature of objects and shows how mathematics can be
applied to decision-making. Suggested approach teaches students that mathematics may
be considered as a science about properties of abstract objects rather than about objects
themselves. It helps development of critical thinking capabilities so needed in studying
science and engineering.

Object-oriented programming and mathematical systems. Object-oriented
programming operates with classes and objects that possess properties and are subject to
operations called methods. A class defines abstract characteristics of an entity in
question, while an object represents a particular instance of a class. Three main features
of classes are essential for this paper: polymorphism, encapsulation, and inheritance. For
objectives of this paper, polymorphism may be considered as an abstraction from any
actual class implementations, encapsulation, as closure with regards to methods, and

222



inheritance, as a possibility to extend a class to a wider one with more properties and
methods, using the given class as a building block.

A mathematical system contains a set of concepts and elements, a set of axioms related to
the concepts and elements, and a set of operations over the elements of the system.
Straightforward analogy between mathematical systems and classes may be set up as
follows. Class may be considered as a mathematical system, objects of a class, as a set of
its elements, properties, as axioms, and methods, as applicable operations. To make
students familiar with the suggested approach, it is practical to begin with consideration
of natural numbers as a class, to point out its properties and methods, and then to expand
it to the classes of whole, integer, rational, and real numbers.

Object-oriented approach to problem solving. A problem related to problem solving,
borrowed from Dressler &Keenan(1998), is used as a basic example. It is considered as a
board game and extended further to more general object-oriented setting. It is used in this
section to demonstrate how object-oriented programming approach may be used for
solution of similar problems. It is also shown that suggested approach provides an
opportunity to see a bigger picture rather than allows just solving particular problem.

The problem is this. "Three friends, Jane, Rose and Phyllis, study different languages and
have different career goals. One wants to be an artist, one a doctor, and the third a lower.
<The following rules determine their choices:> (1) The girl who studies Italian does not
plan to be a lawyer.(2) Jane studies French and does not plan to be an artist. (3) The girl
who studies Spanish plans to be a doctor. Phyllis does not study Italian. Find the
language and career goal of each girl "

To apply object-oriented programming, we first introduce a class Student with two
properties: Language and Career. Property-1 Language has values {French, Italian,
Spanish}, property-2 Career, values {Artist, Doctor, Lawyer}. The class has three
installments, or objects, in this problem that may be labeled by the first letters of the girls’
names: J, R, and P, respectably. A method called MatchGoals() sets up correspondence
among the properties of the objects. It works with a matrix dimension 3 by 3 with rows
corresponding to the values of property-1 (Language), and columns, to property-2
(Career). An algorithm of the method processes rules successfully and fills in cells of the
matrix with the letters corresponding to the objects that can occupy the cell, J, P, or R or
their logical combinations using ~NOT), A(AND) and v (OR) symbols. Eventually,
only three cells are filled in, each taken from one row and one column; all the rest cells
are empty.

The algorithm performs several runs using the rules consequently, and analyzes the table
after each run. Run 1 uses Rule (1) and empties a cell locating at the intersection of row
Italian and column Lawyer, see Fig. 1, Run 1, where symbol "-" stands for "Empty" that
means that a cell contains no object name and should not be analyzed in consecutive runs.
Run 2 uses Rule (2) and fills in row French with J and column Artist with ~J, see Fig. 1,
Run 2. After that the algorithm performs analysis of the table and changes cell French-

223



Artist for Empty, because it contains a contradictory J A~J , see Fig. 1, Analysis 1. Run
3 utilizes Rule (3), and labels cell Spanish-Doctor as chosen one, see Fig. 1, Run 3. A
value of this cell is not known at this stage but it allows marking all the rest cells in row
Spanish and column Doctor as Empty, see Fig. 1, Analysis 2a. Now, the choice of cells
is complete because each row and column contain only one non-Empty cell, see Fig. 1,
Analysis 2b. Content of the cell French-Lawyer is J. Run 4 fills in a cell ltalian-Artist
with ~P, using the Rule (4), see Fig. 1, Run 4. After that Analysis 3 step changes ~J A ~P
for R, see Fig. 1, Analysis 3a, and then finalizes the process by matching remaining
object P with the cell Spanish-Doctor, see Fig. 1, Analysis 3b.

Figure 1. Steps of the MatchGoals() method.

Run 1. Using Rule (1).

Artist Docior Lawyer
French
ltalian -
Spanish
Run 2. Using Rule (2).
Artist Doctor Lawyer
French Jr~J J J
ltalian ~J -
Spanish ~J
Analysis 1. Logical analysis and transformations.
Artist Doctor Lawyer
French - J J
Italian ~J -
Spanish ~J |
Run 3. Using Rule (3).
Artist Doctor Lawyer
French - J J
Italian ~J -
Spanish ~J
Analysis 2a. Logical analysis and transformations.
Artist Doctor Lawyer
French - - J
Italian ~J - -
Spanish - -
Analysis 2b. Logical analysis and transformations.
Artist Doctor Lawyer
French - - J
Italian ~J - -
Spanish . -

224




Run 4. Using Rule (4).

Artist Doctor
French - - J
ltalian ~J A ~P - -
Spanish , - 2
Analysis 3a. Logical analysis and transformations (continued.)
Artist Doctor Lawyer
French - - J
ltalian R - -
Spanish - -
Analysis 3b. Logical analysis and transformations Final result.
Artist Doctor Lawyer
French - - J
Italian R - -
Spanish - P -

Object-oriented approach allows easy generalization to numerous similar applications.
Thus, I suggested reconsidering this problem using class Nature that inherits all
properties and methods of the previous class Student. Property-1 was renamed as
NumberOfLegs with the set of values {0,2,4}; property-2, as TypeOfMoving with values
{Flying, Walking, Swimming}. The objects of the new class were Animal, Bird, and
Fish. Students were asked to solve the new problem using the same method and to
prepare other examples of the same class with different objects and different
interpretations of its properties. While discussing suggested interpretations, author
stressed that rules should be chosen very carefully. Thus, there cannot be too little rules,
because its number should be enough to fill in all cells. On the other hand, there should
not be too many rules, because in this case the rules may be either redundant or
contradictory. It may be demonstrated also that different collection of rules may lead to
the same result, thus being equivalent. For example, the Rules (1) through (4) above may
be changed for the following equivalent set: (1a) Jane studies French and plans to be a
lawyer. (2a) Rose does not study Spanish. (3a) Phyllis plans to be a doctor. -

Students were asked to solve the same problem with a different set of rules and to show
that answer is the same. In the following discussion, students were asked, whether the
subject area (career choice, skills etc.), type of the participants in the problem (human
beings, animals etc.), or the character of properties in question (career choice,
preferences, tastes etc.) were principal for the strategy of solution. While arriving at the
answer "No", they were asked to design a class that covers all such problems, that makes
a link to the subject area only when objects are instantiated. Table 1 presents such class.
It contains: (i) Two properties Property-1 and Property-2, respectively, each having a set
of values, that should be matched; (ii) A new Conclusion-property ObtainedResult that
has three possible values: OK, Redundancy, and Contradiction. This property indicates
whether a problem in question was solved (OK), contains the rules that are not needed for
solution (Redundancy), or cannot be solved due to contradictory rules (Contradiction);

225



(i) Class-related rule-properties that do not refer to an object name, like Rules (1) and
(3) above; (iv) Object-related rule-properties that use an object name, like Rules (2) and
(4) above; (v) Class method MatchGoals(). The class, by consensus, was given a name
Matching, see Table 1. Students were also suggested to reconsider the problem, using
object Nature of class Matching that actually inherits all properties and methods of the
class Student. Property-1 was renamed as NumberOfLegs with the set of values {0,2,4};
property-2, as TypeOfMoving with values {Flying, Walking, Swimming}. The objects of
the new class were Animal, Bird, and Fish. Students were asked to develop a new
wording for the new problem and to solve it using the same method. After that they were
asked to think off a series of board games based on class Matching as different objects
with specific properties.

Table 1. Abstract class Matching.

Properties
Property-1 Values: 4,B,C, ...
Property-2 Values: -a be..:
ObtainedResult-property Values: {OK, Redundancy, Contradiction}

Class-related rule-properties (CRPs)
Properties expressed in terms of the Property-1 and Property-2 values.

CRP-1 Examle: {A Anc = True}

CRP-2

CRP-m

Object-related rule-properties (ORPs)
Properties expressed in terms of the Property-1 and Property-2 values and including the
name of an object.

ORP-1 Example: {Bv a = True for this object}
ORP-2
ORP-n
Methods
Class-related method MatchGoals() | Algorithm of the method.

Binary system and logical operations in Nim game programming is another example
of using board games programming for teaching mathematics. It focuses on mathematical
tools that might be needed for implementation of the methods. Detailed description is
given in Vaninsky (2007). i

References.

Dressler, 1. and E. Keenan. (1998). Integrated mathematics: Course 1. 3™ Ed. NY:
Amsco School Publications.

Vaninsky, A. (2007). Activity - based introduction to the binary system: Nim game
winning strategy. /nternational Journal of Mathematical Education in Science and
Technology, January 2007, 38(1), 43 - 54.

226




