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Power Series Solution about an Ordinary Point.

Suppose we are given a second order differential equation: "'+ p(x) Y +q (x) y=0.
We say that x, is an ordinary point for this equation if and only if both p(x) and ¢(x)

are analytic x,. That is, p(x) and q(x) can be represented by power series centered at

: A Z pi(x—x,) andq qu (x— Jc0 , where both series have some

positive radlus of convergence. It is wel]—known that in this case the equation has two
linearly independent power series solutions.

I Z a, (x—x, )k is a solution the equation, then this power series satisfies the initial

conditions y(x,)=a, and y’(x,)=a,. The coefficient of the second degree term can be

found by solving the equation for y'’ and substituting x,:
Y (x%)==p(x)y (%) =a(x)y(%)=—P(%)a —q(x)a.
J’H(xo) N _p(xo)a; _‘?(xo)ao
21 2! '
equation, substitution of x, and dividing both sides by k! shows us:

1 k—
a__

Repeated differentiation of the

Therefore, a, =

k=2
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P (50~ g ()
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0k —1]' - ke (k-1))!

J=

fot £=2,3, 4,

The program “ordinpt” performs the calculations above. The commands of this program
are as follows:

:ordinpt(xo,yo,dyo,n)
:Prgm

:Local i,k
0V—1:0—k
:newList(n-2) — plist
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:Fori,1,n-2

:d(p(x),x,1)|x=x0— plist[i]

:EndFor

:newList(n-2) — qlist[i]

:Fori,1,n-2

:d(q(x),x,1)|x=x0— qlist[i]

:EndFor

:newList(n) — a

:dyo—a[1]

-(p(x0)*dyo+q(x0)*yo0)/2 — a[2]
:-p(x0)*a[2]/3-(plist[1]+q(x0))*a[1]/6-qlist[1]*yo/6 — a[3]
:Local b,c

:0—b:0—c

:Fork,4,n

-p(xo0)*a[k-1]/k-q(x0)*alk-2]/(k*(k-1))— b
:-(plist[k-2]*a[1]+qlist[k-2]*yo)/(k!)— ¢

:bte-1/(k*(k-1))* Z (((k-1-j)*plist[j]*a[k-1-j]+qlist[j]*a[k-2-1]1)/(G1.i,1.k-3) — a[k]
:EndFor

:yo+ E a[k]*(x-x0)"k.k,1,n)— ss

:EndPrgm

Before you run this program, you should place the calculator in “auto” or “exact” mode,
and if the functions p(x) or g(x) contain any trigonometric functions, be sure to set the

calculator in radian mode. It is also a good idea to perform F6: NewProb before running
the program. After this is done, use F4: Define p(x)=--- then use F4: Define

q (x) =--+ (be sure to name the functions this way and use x as the independent variable).
The syntax of this program is: ordinpt(x,, y(x,),»’(x, ).n), where n is the highest power
of (x—x,) in the partial sum.

Example 1: Let us solve the simple equation y’'+ y =0 with initial conditions y(0)=1
and y'(0)=0 (we know the solution will be y =cosx). Define p(x)=0 and g(x)=1.

Obtain the “ordinpt” program from the Var-Link list. In this example, we would enter
ordinpt(0,1,0,8) (we want to see up to the 8™ degree term). The calculator screens are as
in Figure 1:

Fir Fe= [F3~] Fir | FE F&~ Fi-| Fz= [F3=| Fur| FE Fa~
Tools|13ebra|Calc|Other [FramiD|C1ean Up| Tools{A13ebra|Calc|Other|PramidjClean Up

et 1ine q(xX)= one
B diffeqordinpt(0,1,0,8)
Done

= HewProb Done ®ss
B Define p(x)=0 Done %5 x® x* %2
s Define afx) =1 Done 0320 720 28 2 'l
diffeqrordinpt(d,1,0,83]
MAIN RAD AUTD FOL 3730 MAIN RAD ALTO FOL E730

Figure 1 — Setup for calculation and results.
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Press “Enter”. Then type in “ss” (series solution) in the command line. We recognize the
series as that of the cosine expanded about 0

Example 2: If we wanted the series expansion for the solution to 3’ +y =0 about the
ordinary point x, =1, with y(1)=0and’(1)=1 (up to the 6™ degree term), we would
enter ordinpt(1,0,1,6). Figure 2 shows the result.

Fi-| Fe- |Fi-| Fur| FE Fé~ Fi-| Fe~ F&
|'ro.ﬁs ll15¢braIcuchntherI?v!mlnlﬂtun url A13ebra @mm.

" diffeqrordinpt(l,0,1,6) a 3
Done - 1nr~[ [x- 1]-[x —4-x~ -y
L =53 H 1
(x—l)-[x4—4-x3—14'x2+b [:x—ljs (x—l)3
120 126~ 6 "x1

MAIN RAD AUTO POL 77430 HAIN RAD ALTO FOL B30

Figure 2 — Result of calculation (left) and after using the taylor command (right)

Notice that in the left screen, the calculator has expanded the binomials. If we want the
series in (x—xo), use the taylor command. The syntax for the taylor command is:

taylor( f (x),x, n, xo). This will give the partial sum of the taylor series for the function

k (x) , using the variable x up to order n, expanded about x,. The result is seen in the
right screen in Figure 2.

Series Solution about a Regular Singular Point

The differential equation y”+ p(x)y'+¢q(x)y=0 is said to have a regular singular
point at x, if one (or both) of p(x) and g(x) fails to be analytic at x, but (x—x, ) p(x)

and (x—x,)" ¢(x) are analytic at x,. Thatis, (x—x,)p(x)= f:pk (x—x,) and
k=0

(x —%, )2 q (x) = iqk (x— X )k , where each series has a positive radius of convergence.
k=0

In this case, we will have at least one Frobenius series solution:

y=(x—x0)r2ak (x—xo)k =Zak (x—xo)mc ;
k=0 k=0

where g, =0. Differentiating the Frobenius series twice and substituting into the
differential equation, we obtain (since a,=0): (r—1)r+ pyr+g, =0 This is called

the indicial equation. Its solutions give the possible exponent of the power function that
multiplies the power series in the Frobenius series. There will always be a Frobenius
series corresponding to the larger of the roots of the indicial equation. If the two roots are
equal or if they differ by an integer, then there may not be a second Frobenius series
solution. Set g, =1. Then
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—(pr+q) o pey (r+i)a =3 4,4,
a = ! . and a, =

r(r )+ oo (r+1) + g, T (r+k=1)(r+k)+p, (r+k)+gq,
where k=2,3,4,--- and r is the larger of the indicial roots.

The program “resingpt” performs the calculations above. The commands for this
program are as follows:

:resingpt(xo,n)

:Prgm

:ClrIO

:Xp(x0) — po:x2q(x0) — qo

:Disp “Indicial Equation & Roots:”
:Disp (r-1)*r+po*r+qo=0

:Disp solve((r-1)*r+po*r+qo=0,r)
:Pause

:Input “r=?"",ro

:Local i,j,k

0—1i:0—j:0—-k

:newList(n) — xplist

:Fori,1,n

(d(xp(x),x,1)[x=x0)/(i!) — xplist[i]
:EndFor

:newList(n) — x2qlist

:Fori,l,n

(d(x2q(x),.x,1)[x=x0)/(i!) — x2qlist[i]
:EndFor

:newList(n) — a
:(rO*xplist[1]+x2qlist[1])/((ro+1)*ro+po*(ro+1)+qo) — a[1]
:Fork,2.n
~(xplist[k]*ro+x2qlist[k]+ Z ((xplist[k-j]*(ro+j)+x2qlist[k-j])*a[j].j.k-1))/((ro+k-
)*(rotk)+po*(ro+k)+qo) — alk]
:EndFor

(14> alk]*(x-x0)"kk,1,n)) — ss

:EndPrgm

To use this program, you must first define (using “F4:Define”) the functions
xp(x)=(x—x,) p(x) and x2¢(x)=(x—x,) ¢(x). Be sure to simplify by cancelling if
at all possible. Use these names for the functions and use x as the independent variable.
The syntax of the “resingpt” program is “resingpt( x,, n), x, is the regular singular point
and # is the highest power in the power series factor of the Frobenius series.

Example 3: Find Frobenius series solutions for the equation 2x’y"' —x y'+(1+x)y =0.
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First divide both sides by 2x* so that the coefficient of y''-term is 1. We get

1 1+
y”_ﬂy’—i_(zx}C)y 0.

)

. . . . 1
Notice that 0 is a singular point, but x- p(x)= — and x*-g(x)= >

are analytic at 0. Define xp(x)= —% and x2¢ (x) = (Hz—x)_ Let’s look for the partial

sum of the Frobenius series solution centered at the regular singular point x, up to the 4t

degree. Figure 3 shows the setup of the calculator (left screen). Press “Enter”, the
program will display the indicial equation and the roots of this equation. You are
prompted for the root to use. Let’s use the larger root. Type in “1” and press “Enter”

Fi=] F&» |F3«] Fir| FE Fa~ Fi-l #o-
Tools|A13zbra|Calc|Other |Fr3mi0|Clean Ur| B SR Bl

i ]? o I :,.ﬁ [’:'I;.‘,,.,..I; I*::J# A I :..-] ]

Indicial Equation & Roots: Indicial Egquation & Roots:
= HewProb Done P 32 +1s2=8 r2-
"Define xpOO=-1s2  Done . _y,5 gp p=t F=1s2 oF =1
B Oefine x290x) = 1 ; 2 Done Ir*=‘?
diffeqsresingpt (0,43
MAIN RAD ALTO FOL 3730 MAIN FAD ALTO FOL EMEd AN FAD ALTD FOL 3730

Figure 3 — The results of the calculation for the Frobenius series.

In a few seconds the calculation is done. Go to the home screen and type in “ss”. The
results are given in Figure 4.

f132bra

L] propFrac[S—:]

x? x> x2

*
T2650 ~ _5_39 oI

Hoke: Domain ')F rtsultmw be Tardcr

Figure 4 — The power series factor in the Frobenius series.

¥ X
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Thus, one Frobenius series is: y=ux 1—w-—+§-6—n6—3-0—+ 57680 +--

Since the indicial roots do not differ by an integer, there will be a second linearly
independent Frobenius series solution corresponding to the indicial root »=1. Let’s
find it. After running the program again (looking for the solution up to the 7 degree),
selecting 7=+, we obtain the following partial sum (you must supply the factor

xlzﬁ):

2 3 4
x x i i’ %

=Jx|l—x+ -2y + = +
. 6 90 2520 113400 7484400 681080400
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