ELEMENTARY CODING THEORY INCLUDING HAMMING AND
REED-SOLOMON CODES WITH MAPLE AND MATLAB

Richard Klima Neil Sigmon

Department of Mathematical Sciences Department of Mathematics
Appalachian State University Radford University

Boone, North Carolina 28608 Radford, Virginia 24142
klimare(@appstate.edu npsigmon(@radford.edu

As our society continues to become more reliant on digital and computing technology for
communication, the ability to transmit information in a reliable fashion continues to
increase in importance. Coding theory is the study of methods for efficient and accurate
transmission of information. Techniques in coding theory are currently used to ensure
effective communication, including between, for example, wireless devices and satellites,
in the encoding of music and information on compact discs, and in numerous other areas.

A code is a set of messages, called codewords, which can be transmitted electronically
between two parties. An error correcting code is a code for which it is sometimes
possible to detect and correct errors that occur during transmission of the codewords.
Many of the current techniques in coding theory are applications of topics typically
studied by students in undergraduate linear and abstract algebra courses. The
calculations involved with these techniques can be tedious by hand or with only a hand-
held calculator, thus making it difficult for students to see realistic examples that
demonstrate their importance. However, this problem can be alleviated through the use
of computing software such as Maple or MATLAB. Many techniques in coding theory
can easily be implemented using Maple and MATLAB, and can thus provide students
with opportunities to work with realistic examples of several different types of codes.

The purpose of this paper is to demonstrate how three well-known error correcting codes,
Reed-Muller, Hamming, and Reed-Solomon codes, can be implemented using Maple or
MATLAB. We have successfully taught each of these topics in courses involving
applications of linear and abstract algebra. The use of Maple and MATLAB to perform
the necessary computations has been an essential and integral part of the process.

Reed-Muller Codes

Reed-Muller codes were developed in 1954 by 1. Reed and D. Muller, and were among
the first error correcting codes with the ability to correct multiple transmission errors.
Reed-Muller codes were used extensively in the Mariner 9 space probe when it
transmitted photographs back to Earth after entering into an orbit around Mars.

Reed-Muller codes can be constructed using Hadamard matrices. An n x n matrix H is

called a Hadamard matrix if the entries in H are all 1 or —1, and HH" = nl, where I is
the n x n identity matrix. A normalized Hadamard matrix is one in which the first row

131



and column of H contain only positive ones. The only normalized Hadamard matrices of

1 1
orders one and two are H, =[1] and H, —L IJ' Additional normalized Hadamard

n 7

H, -H,

K

H H
matrices can be constructed using the block matrix formula H,, :{ J

Beginning with a normalized Hadamard matrix H of order 4k > 8, a Reed-Muller code is
constructed by the following steps:

1. Delete the first row and first column from H, and change all negative ones in H
into zeros. Call the resulting (4& —1)x (4k —1) matrix A.

2. Interchange all zeros and ones in A. Call the resulting (4k —1)x (4k —1) matrix
B.

3. Attach a column of ones to the left of A, and a column of zeros to the left of B.
Call the resulting (4% —1)x (4k) matrices A and B, respectively.

4. Stack the matrices A and B together to form a new matrix, and include at the
bottom of this new matrix an extra row of all zeros, and an extra row of all ones.

Call the resulting (8k) x (4k) matrix C.

The rows of C are the codewords in the Reed-Muller code. Suppose a codeword ¢ in this
code is transmitted, and we receive a vector r of the same length as ¢. If r is not a
codeword in the code, then we would assume that the fewest possible number of errors
occurred during transmission, and correct r (by trial and error) to the codeword from
which it differs in the fewest positions. As long as fewer than k errors occurred during
transmission, then we are guaranteed that ¢ will be the only codeword from which r
differs in fewer than k positions. As such, the code is said to be (k - 1)-err0r correcting.

Reed-Muller Codes with MATLAB

Through the matrix functions that are readily available within MATLAB, it is easy to
construct and correct errors in Reed-Muller codes. We demonstrate by generating the
Reed-Muller code that was used in the Mariner 9 space probe when it transmitted
photographs back to Earth after entering into an orbit around Mars. The code was
constructed beginning with the normalized Hadamard matrix H,, (with £ =8). Thus, the
code consisted of 64 codewords, each of length 32 positions, and could correct up to 7
transmission errors. Before being transmitted, photographs taken by the probe were
broken down into a collection of pixels. Each pixel was assigned one of 64 levels of
grayness, and then encoded into one of the 64 codewords in the code. Due to space
limitations, the MATLAB commands that we used to construct and correct errors in this
code cannot be displayed here. However, the MATLAB M-file reedmuller.m, in which
we give an interactive demonstration of how to construct and correct errors in this code,
can be downloaded from [1].

132



Hamming Codes

Hamming codes were developed in 1950 by R. Hamming, and have been used
extensively in the telecommunications industry and in the transmission of data between
computers. Hamming codes are only able to correct one transmission error. However,
Hamming codes are perfect, meaning that every vector that can possibly be received (of
the correct length) is guaranteed to be uniquely correctable to the codeword that was
originally transmitted (assuming no more than one transmission error occurred).

Codewords in Hamming codes are constructed as follows. Let W be the vector space
consisting of all binary k-tuples, and let V be the vector space consisting of all binary n-
tuples with k <n. Also, let G be a k x n binary matrix of full row rank. The codewords
in a Hamming code are then the vectors in the set C = {v eV |v =wG for some w € W },
which is a subspace of V of dimension & and order 2*. The matrix G used to construct

the code is called a generator matrix for the code, and can be formed from the null space
of a matrix H known as the parity check matrix for the code. A convenient method for

constructing H istolet n=2" -1 and k =2 —1—m for some integer m >1. With these
parameters, H can be the matrix of size m x (2™ —1) whose columns form an ordered list
of the binary expressions of the integers 1,2,...,2" —1, which, with leading zeros, yields

all nonzero binary vectors of length m. For example, the following is the 4 x15 parity
check matrix for the Hamming code with m=4.

00000001 1111111
0001111000011 11
o 1 1001100110011
1 01010101010T101

The resulting generator matrix G will be a matrix of size 2" -1-m)x(2™ 1), or
11x15 for the parity check matrix shown above, whose rows form a basis for the null
space of H. Thus, if ¢ = wG is a codeword in a Hamming code, it follows that He! =0.
This fact provides a convenient method for checking if a received vector is a codeword.

To demonstrate how transmission errors can be corrected in Hamming codes, suppose a
Hamming codeword c¢ is transmitted, and we receive a vector r of the same length as c.
In addition, suppose Hr' #0, so we know r is not a codeword. Assuming that exactly
one transmission error occurred, say in the i position, we can correct r to ¢ as follows.
Note first that r=c +e; for the error vector e, that contains a zero in every position

except for a single one in the i position. As a result, Hr' = He!, and thus Hr' and
HeiT produce the same column in H. Therefore, to correct r to ¢, we can compute Hr'
and compare the result to the columns in H. The column in H that is identical to Hr"

will be in the same position in H as the position of the single transmission error in 7.

133



Hamming Codes with Maple

Through the matrix functions that are readily available within Maple, it is easy to
construct and correct errors in Hamming codes. Due to space limitations, the Maple
commands that we used to construct and correct errors in Hamming codes cannot be
displayed here. However, the Maple 10 file hamming.mw, in which we give an
interactive demonstration of how to construct and correct errors in Hamming codes, can
be downloaded from [1].

Reed-Solomon Codes

Reed-Solomon codes were developed in 1960 by 1. Reed and G. Solomon, and are
claimed to be the most frequently used digital error correcting codes in the world. They
are used extensively in the encoding of music on compact discs, have played an integral
role in the development of high-speed supercomputers, and will be an important tool in
the future for dealing with complex communication and information transfer systems.
They were also famously used in the Voyager 2 satellite when it transmitted photographs
back to Earth as it passed by the outer planets in our solar system (see Figure 1).

Figure 1: Photographs taken by Voyager 2 of Neptune and one its moons (courtesy NASA/JPL)

In the following discussion, we will describe how to construct and correct errors in Reed-
Solomon codes using the code that was actually implemented in the Voyager 2 satellite.

Reed-Solomon codes are constructed using finite fields. The Reed-Solomon code that
was implemented in Voyager 2 was constructed using a finite field F containing

2% =256 elements formed using the primitive polynomial p(x)=x*+x*+x*+x? +1.
The codewords in this code are the polynomials that are obtained as multiples of the
generator polynomial g(x)=(x - a)(x - az)--(x - a32) over F, where a represents the

primitive element used to generate the elements in F. That is, the codewords in the code
are the polynomials ¢(x) that are obtained by computing ¢(x)= m(x)g(x) over F, where

m(x) represents any polynomial of degree less than 2% —32—1=223 with coefficients in

F. Each codeword c(x) is represented by a polynomial of degree less than 2% —1=255

134



with coefficients in F. The information transmitted in a codeword c(x) is located in the
list of coefficients of c(x), which can be viewed as the elements in a vector of length 255

over F. Each polynomial coefficient in the codeword can be viewed as a binary
polynomial of degree less than deg(p(x)):S, and can be represented by a unique

element in F. In the Voyager 2 satellite, full color images were digitized into binary
vectors, which were expressed in blocks of length 8 and converted into coefficients for a
codeword c(x). For example, the binary block (10111001) can be represented as the

clement 1+a”+a’ +a* +a’ in F, which can be used as a coefficient for a codeword
c(x). This technique can also be used in reverse to convert a codeword into a binary

vector of length deg(p(x))- (28 — 1): 2040.

To correct errors that occur in this code, we can use the fact that for a codeword c(x) n
the code, c(ai): 0fori=12,..,32. If c(x) is transmitted, and we receive a polynomial

r(x) of an allowable degree (less than 255) that is not a codeword, an error polynomial
e(x) can be determined (assuming a given error-correction capability is not exceeded)
that yields c(x)=r(x)+e(x) over F. Determining e(x) requires computations involving
the Euclidean algorithm, The Reed-Solomon code used in Voyager 2 could correct up to
32/2 =16 polynomial coefficient errors, or up to 121 binary errors.

Reed-Solomon Codes with Maple

The extensive computations that are involved with implementing Reed-Solomon codes
can be completed relatively quickly using Maple. Due to space limitations, the Maple
commands that we used to construct and correct errors in Reed-Solomon codes cannot be
displayed here. However, the Maple 10 file reedsolomon.mw, in which we give an
interactive demonstration of how to construct and correct errors in Reed-Solomon codes,
can be downloaded from [1].

Conclusion

We have shown how Maple and MATLAB can be used to assist in implementing several
types of error correcting codes, each of which would be appropriate as an application in
undergraduate linear or abstract algebra. The use of Maple or MATLAB would allow the
instructor to use realistic examples without the overhead of tedious hand computations.

References

[1] R, E. Klima and N. P. Sigmon. Web site for ICTCM Maple and MATLAB files.
Available at http.//www.radford edu/~npsigmon/ICTCM2006/downloads. htm.

[2] R. E. Klima, N. P. Sigmon, and E. L. Stitzinger. Applications of Abstract Algebra
with Maple and MATLAB, Second Edition. CRC Press, LLC, to appear in Summer 2006

135



