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Abstract

In this paper, we will discuss the use of Computer Algebra Systems (CAS) and Statis-
tical software to investigate various theorems in Mathematics and Statistics. Specifi-
cally, we’ll present examples to demonstrate the use of Maple and Geometry Explora-
tion Software (GES) to validate the expected results of theorems in calculus and ge-
ometry.,
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Introduction

In the past two decades, technology-based instruction using tools such as graphing
calculators, computer algebra systems, statistical packages and Geometry Exploration
software has become an essential component of undergraduate mathematics. At Texas
Lutheran University we introduced graphing calculators to our classes about twenty
vear ago. During the early 90°s we began using Maple in our mathematics classes,
making us one of the first schools to use this technology, We have also utilized statis-
tical packages, such as Minitab, in our statistics courses. Recently we have begun us-
ing the Geometry Exploration software with students majoring in education. It has
been our experience that simple presentation of a theorem, even proof of a theorem,
does not satisfy the curiosity of most students. They must see the application and veri-
fication of a theorem to appreciate its significance. The traditional paper and pencil
tools are cumbersome and impractical when used to generate the multiple instances
necessary to establish the plausibility of theorems. Current mathematics technology
creates an environment for a more practical exploration process and a more enjoyable
learning experience. In this paper, we have attempted to share some our experiences
in using technology to explore various theorems. For the sake of brevity, we have lim-
ited our examples to the theorems related to topics in geometry, calculus and statis-
tics. For examples related to post-calculus topics and examples demonstrating the
shortcomings of technology (specifically Maple) we refer the reader to references at
the end of this paper.

In the following pages we’ll present three examples to demonstrate our work. For a
complete list of the projects, the reader is encouraged to contact the authors.



1 Exploring the Fundamental Theorem of Calculus

In most calculus textbooks, the Fundamental Theorem of Calculus is introduced in
two parts. One is the practical part, which allows a student to determine the value of a
definite integral by evaluating an antiderivative at the upper and lower bounds. The
second part simply states that if F(x) is defined as the integral of f(1) for a <t <x, then
(assuming f is continuous), F' = f. To illustrate the theorem, most of the time a student
chooses a simple function f(t), and using the first of the theorem verifies the second
part. However, this process of verification fails if f(t) is a more complicated function.
In the following example, we’ll use of Maple to numerically evaluate the antideriva-
tive of g(t) = exp(—xz) at selected points and then numerically differentiate the result.
Finally, we’ll use Maple to graph of the resulting values and show that it perfectly
matches the graph of f(t).

2
(-x7)
>gr=x->exp(-x*2); =X —=>¢€

>with(student) :

>k:=10;ptsGprime:=array(l..k) ;inc:=0;Gvalold:=0;
k=10

pisGprime = array(1 .. 10, [ ])
inc =0
Gvalold =0

>for i from 1 te 10 do

inc:=inec+0.1;Gvalnew:=evalf (simpson(g(x) ,x=0..inc,16)) ;Gprime:=(Gvaln
ew-Gvalold) /0.1 ;ptsGprime([i] :=[inc-0.05,Gprime] ;Gvalold:=Gvalnew; end
do;

inc .= 0.1
Gvalnew = 0.09966766429
Gprime = 0.9966766429
pisGprime = [0.05, 0.9966766429]

Gvalold = 0.09966766429

We have omitted the rest of the output for the sake of brevity.
>plotGprime:=[seq(ptsGprime[i] ,i=1. .k)];
plotGprime = [[0.05, 0.9966766429], [ 0.15, 0.9769736701], [ 0.25, 0.938728534],
[0.35, 0.884149629],[0.45, 0.816281794],[0.55, 0.738725419],
[0.65, 0.655321699], [0.75, 0.569842184], [ 0.85, 0.485716807],
[0.95, 0.405826196]]

> graphl :=plot (plotGprime, style=point, symbol=circle, thickness=5) :
> graph2 :=plot(g(x) ,x=0.1..1,thickness=2) .
>plots[display] ([graphl,graph?]}) ;
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As expected the graph of the (numerical) values of the derivative of (the numerncal)

integral of f(t) overlaps the graph of (1), thus verifying the statement of the theorem.

2 Exploring a Remainder Theorem for Series with positive terms

A portion of this Theorem [3] states the following: Suppose that Za, is a converging
series, B= limit of r, = an+1 /2, as n approaches oo and {r,} is an increasing sequence.
Then the remainder after n terms, R, is such that R, < ay+; /(1-B). Testing such a theo-
rem 1s a very difficult task for a typical student. For example, finding the limit of most
series (except for Geometric Series), even if they exist, is beyond the reach of most
students. In the following example we’ll investigate this theorem using a problem
taken from [3].

1
>a:=n->1/(n*2"n); a =n—o

n2"

k

, 1
>ser:=k->sum(l/ (n*2”n) ,n=1..k); Ser =k —>

n:1n2”

» plot(Ser(k) k=1..10,style=POINT, symbol=CIRCLE) ;
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The plot indicates convergence, but let’s use the ratio test to prove it.

= s a(n+1)
>ri=n- s F = —_—
r:=n->a(n+l) /a(n) ; a(n)

1
>B:=limit (r (n) ,n=infinity); B =

2
Plot r versus n to show that {r,} is an increasing sequence:

>plot(xr(n) , n=1..20);
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Now we’ll use Maple to find the limit of the series, S, sum of the first seven terms, s7,
the actual remainder | S—s7| and an upper bound for the remainder.

>1limit (Ser (k) ,k=infinity) ;

2 LerchPhi(l, 1, kj !

2
lim In(2) - + -
k—> o ( ) 2(k+1) Zkk

> S:=evalf (%) ; S = 06931471806

>s7:=evalf(Ser (7)) ; 57 .=0.69226190438

> ExactR:=abs (8-57) ; FxactR = 0.0008852758

> upperR:=evalf (a(8) / (1-B)) ; upperR =0.0009765625000

The result is consistent with the Theorem, which clearly gives us an upper bound for
the remainder.

3 Exploring Geometry with GES

In our math course for future teachers the students generally underestimate their abil-
ity to understand and do mathematics. This is an example of one simple textbook
problem that, with the help of GES led to some interesting mathematics.

Our text book asked that we create a quadrlateral “‘A” and then find and connect the
midpoints of the sides of ‘A’ thus creating a new quadrilateral ‘B’ that lies inside “A”°
What is the ratio of Area ("A’) / Area (‘B*)?

Using GES the students were able to draw
the appropriate figure and calculate the
value of the ratio. They found Area (‘A’)/
Area (‘B’)=2.0,

By distorting the original figure the stu-
dents suddenly had multiple examples, all
of which suggested that the ratio Area
("A’) / Area (‘B’) was always two, inde-
pendent of the quadrilateral with which

they started.

Because of the ease of using GES the students will ask the next question: namely, if

we used triangles instead of quadrilaterals, when we compare areas, would we get a
ratio of two?

With their first triangle they found Area (‘A’) / Area (‘B’) = 4 and by distorting the
figure they found empirical evidence that for all triangles, Area (‘A’) / Area (‘B’) = 4.
Quickly they moved on to figures with more sides and discovered (empirically)

the following:



sidesl ratio| This lesson presents a great opportunity to discuss the distinction be-

3 41 tween empirical and deductive results. The students know that ex-

- amples suggest but do not prove results. So, we have formulated a

4 2:1 | 1oose hypothesis that if figure ‘A’ is an n-gon and figure ‘B’ is an n-

5 |1.53:1] gon constructed by connecting the mid points of the sides of A’ that

6 331 the ratio Area (*A’) to Area (‘B’) is constant. To prove this result we

need to use deductive logic. To simplify the proof we amend the hy-

pothesis to include only regular polygons. Without too much difficulty they find (or at

least agree) that the area of a given original polygon is given, as a function of the
number of sides, n, and the radius of a circumscribed circle, 1, by

-2

n¥r’* sin(l—?:—2 *90) cos( *90) And the area of the inner polygon created by
2 connecting mid-points of the original figure
Is given by, n*r’ *Sma(ﬁ;_Z*%) cos(%*%) ,

Taking the ratio Area ("A’) / Area (‘B’) yields Area ("A”) / Area ('B’) =Sm2(_(_’2_ 2)*90)
n

This 1s a formula that we have created through deductive reasoning. It can easily be
compared to our empirical results:

# sides | deductive | emperical | An important result will follow when the students
3 4.0000 4.0 point out that the above deductive result was arrived
4 2.0000 2.0 at using regular polygons. Do the results hold for
5 1.5279 1.53 arbitrary n-gons? This leads to a discussion of the
6 13333 1.33 role of counter examples in deductive logic. With a
7 12319 bit of encouragement the student can construct an
8 11716 example that proves that the above result does not
9 11325 hold for arbitrary polygons.

10 1.1056

Conclusion: Technology can be a powerful tool for
motivating our students and for enabling them, with guidance, to investigate mathe-
matical results that in an earlier time would have been beyond their reach. The soft-
ware and hardware does not substitute for deductive logic and proof, but it can moti-
vate the student and support our claims concerning the necessity of formal proof.
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