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Have vou ever wondered how scientists identify objects in space or how police detectives
identify suspects using surveillance cameras? If so, then you've dabbled in an application
image restoration. This paper includes some basic mathematics of image blurring and
examples edge detection. This paper describes part of a module that was taught as part of
a freshman seminar course that intended to introduce freshmen (students with little or no
university background) to current research topics. For full access to the course materials,
go to mathsci.appstate.edu/~kmp/EmoryCourses/FS.html.

Introduction to the Image Restoration Problem

In order to understand image reconstruction, we first need to understand what makes our
images imperfect. Figure 1 demonstrates the difference between blurred images and
noisy images. Blur can come from an out of focus lens or movement from the camera or
the object, and can be modeled easily. Noise, randomly spaced speckles, can also appear
in images, but it is more difficult to model than blur.

(a) true image | (b) blurred image R (c) nisy ige

Suppose we start with a blurred and noisy image (see the first image in Figure 2). How
can we reconstruct this image? One possibility is to use an iterative method, that is, a
method that attempts to solve a problem by finding successive approximations to the
solution. Figure 2 shows images at each step of an iterative method. As we can see from
the images, the image quality grew sharper for a time, then at some point it became
poorer at each iteration until ultimately the "'restored" image was unrecognizable. One
question might be, “how do you know when to stop the iterations?”

Convolution

Convolution is a mathematical operation that models the blurring process. More
precisely, in convolution, each pixel of a blurred image is a weighted sum of neighboring
pixels from the original scene. The weights are defined by a kernel. The following

188



& Yisiown is the
E art of sceing

H a
what i

% invisthle (o
others. ¢

Jonathn

Figure 2: The first eleven images show the srogression from degraded to restored to over-
processed mage. The last image in the series is the non-blurred, non-noisy, original
scene. ‘

example illustrates the convolution operation. Let X denote the input information, and X

denote the <ernel. In particular, suppose:
9 4 14 2

1 4 7
15 1 10 7 ,
- and F'=[6 9. 2
5 8 3 13
3 8 5
16 12 6 11

An importunt part of convolution is that tie ““center” (or origin) of the kernel must be
specified. Ry convention, for kernels with odd dimensions, it is usually the middle pixel
value. Taus, in our example, 9 is the center of the kernel. With this notation, the

convolut 01 operation is performed as:

1. Rotate 11¢ kernel, K, 180 degrees about “he center to get K=

< N a
£ O ™
N W
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2. Place Kon top of X, so that the center of K lies on top of a specific pixel element of
X. Multiply each weight in K by the pixel of X underneath it.
3. Sum up the individual products to get a pixel element of the output (blurred) image.
In particular, the (2,2) pixel of the output image is obtained by putting the center of K
over the (2,2) entry in X as follows:

9" 4% 14° 2

152 17 10° 7

57 8 3 13

16 12 6 11
Then, multiplying and adding, the (2,2) pixel of the output image is:
O%5 + 4*%8 + 14*3 + 15 * 2+ 1*9 + 10*6 + 5*7 + 8*4 + 3*]1 =288,
In order to calculate the (1.1) pixel of the output image, assumptions are made about the
boundary conditions. For example, with a black background (zero boundary condition)

0 0 O
the image is written as |0 X 0|. Now center the kernel around the (1,1) pixel, and
0 0 O

calculate the output, 166. To learn more about other types of boundary conditions such
as reflexive or periodic, see [7].

Convolution as Matrix-vector Multiplication

Convolution may be computed more efficiently as a matrix vector multiplication, Ax = b,
where 4 represents the blurring process, X is a column vector that represents the image
(stack the rows of X), and b is a column vector the represents the blurred image. The
goal here is to calculate the size and structure of A4 that would make the multiplication

AX equivalent to the convolution operation of X with a given kernel. Suppose image X
and kernel K are defined as

9 4 14 2
1 2 1
15 1 10 7
X = and K=[2 4 2|.
5 8 3 13
1 2 1
16 12 6 11

Stacking the rows of X produces a 16 by 1 column vector. Therefore, the blurring array 4
needs to be a 16 by 16 array in order to have legal multiplication. To find the entries of
A, recall the convolution model. The first entry of vector b, corresponding to b, in the
blurred image, results from the convolution of K and X with the center of K lying on top
of X,,. Assuming zero boundary conditions, the arithmetic is

0*1 +0*2+ 0% +0%2 + 9%4 + 4%2 + 0%1 + [5%2 4+ 1*1 = b,
Moreover, this first entry of b, from a matrix-times-vector standpoint, is the result of the

first row of A times the vector x. Putting these two facts together the first row of 4 is

comprised of zeros and the appropriate elements of the kernel, in the appropriate order.
That is, the first row of 4 looks like [4 2 0 0 2} 00000000 O0DO0]

Likewise, the convolution arithmetic to produce b,, is
O%1 + 0%2 + 0%1 + 9%2 + 4%4 + 14%2 + 15%] + 1%2+ 10*1 = b,,
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Thus, the second rowof Ais[2 4201210000000 0 0]
Using the ;ame reasoning, A, the matrix th it models the blur, is

4 2002100000600 0 0
2 4201210000000 0 0
¢ 24201217 0000O0O0O0O0
¢ 02 40017%20000UO0O0TQO00
21 0042002100000 0

21 0242012100000
012102472012 10000
00120072« 00120000
0000210042 002100
000012102 42017210
0 000O0T1210242012.1
0O 000O0O0T1T002400°T1 2
000 0O0O0O0O02T12004200
000 0O0O0DOO 012102420
0000O0O0O0O0CO1210242
0 00 0000COO0T1 200 2 4

Edge D¢tection Experiments

Tte provlem of edge detection is to dete mine locations in an image where there is a
sudden variztion in the gray level. These sudden changes can sometimes be detected by
convolving; the image with certain kerncls. For example, the MATLAB script below
produces t 1 images in Figure 3. Notice thut K1 detects edges that go from white to black
from lefl to right What edges does K2=[.0-1;20-2; 1 0-1] detect?

| = imread(logo.tif’); I=double(l);
Ki1=[-101;-202;-101];

C1 =conv2(l, K1, 'same’);

subplot(1,2,1), imshow(l,[] , title('Original Image")
subplot(1,2,2), imshow(0O1,[]), title(Edges detected by K1')

Deblurring

Fer our worg with computer-based restora:ions, we relied heavily on two things: one, an
image restoration package called RESTORETOOLS [2], [6]; two, careful presentation and
discussicn ¢f the concept of iterative m:thods of image restoration. In an iterative
method fo- solving Ax = b, an initial guess at the true solution is made, ofter. x, = b,
then updaes X, k=12, . are repeatedl’ computed until achieving a resulr that is
sufficientl:” ‘good." One way to check tie quality of an intermediate solution %, is to
compute tle size of AX, — b at each step os the iterative routine. As long as this quantity,
called the ‘esidual, gets smaller at each iteration, the updating process continues. Once it
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begins to grow, the process is halted, and the previous solution is considered the best.
Indeed, in theory, with the exact solution x, Ax - b would be the zero vector. The

Figure 3: Shows the original image and the original convolved with kernel, K1.

problem arises because there is random noise in real data. This is why the iterations in
Figure 2 get worse after some point. Many other methods exist for addressing the image
restoration problem, but no method is ideal, and no method is unconditionally better than
the others. Experience may provide intuition as to the ““best" restoration method for any
given image, but even then, image restoration is not an exact science. The noise in an
image is truly random, a condition which our greatest computers are unable to duplicate.
Nevertheless, given these limitations, minimization of the residual is at least an
intuitively good place to start. For additional background reading and information, see

[11, [3], [4], [5] and [8].

References:

[1] M. Bertero and P. Boccacci. [Introduction fo Inverse Problems in Imaging. 10P
Publishing L.td., London, 1998.

[2] J. Nagy, K. Palmer, and L. Perrone. [lterative Methods in Image Restoration: An
Object-Oriented Approach. Num. Algor., v. 36, pp. 73-93, 2003.

[3] J. Nagy. Applications of Teoplitz Systems. SIAM News, 1995.

[4] J. Nagy. lterative Techniques for the Solution of Toeplitz Systems. SIAM News,
1995,

[5] D. O’Leary and J. Nagy. Image Deblurring: 1 Can See Clearly Now. Computing in
Science & Engineering, IEEE CS and AIP pub. D. O’Leary ed., pp. 2-4, 2003.

[6] RESTORETOOLS: An Object Oriented MATLAB Package for Image Restoration, 2002
hitp:/wew.mathes.emoryv.edu/~nagy/RestorsT ools .

[7] Efford, Nick. Digital Image Processing: A practical introduction using Java, Pearson
Education Limited, pp. 137-140, 2000

[8] Using MATLAB, Version 6. The Math Works, Inc., 2000.

192



