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Introduction. Problems in knot theory are frequently approachable by undergrad-
uates who have just completed multivariable calculus. The computational power of
computer algebra systems and knot theoretic software further enables undergradu-
ate students to observe knot theoretic phenomena, make conjectures, and design and
perform sophisticated calculations to solve research questions. This paper describes
the work T have done with three undergraduates over the summers of 2003-2005 on
determining stick numbers of knots using Derive, Maple, and the knot theoretic pro-
gram, KnotPlot, designed by R. Scharein [5].

Let K be a topological knot or link. The stick number of K, S(K), is the minimal
number of sticks (line segments) needed to form K in three-dimensional space. Our
work is concerned with investigating a variation of the concept of the stick number.
Analogous to the definition of a regular polygon as a polygon with equal-length sides
and equal interior angles, we use the term regular to describe polygonal knots that
have equal-length sticks and equal angles between adjacent sticks. Let o € (0, 7). An
a—regular conformation of K is a polygonal embedding of the K in space such that
cach stick (polygonal edge) has the same length and that the angle at each vertex
joining two adjacent sticks is a. The a—regular stick number of K, denoted S, o(K),
is the minimal number of sticks needed to construct an a—regular conformation of K.
Moreover, part of the interest in polygonal knot conformations outside mathematics is
that these conformations may serve as mathematical models for particular molecules:
the vertices represent the atoms in the molecule, and the sticks represent the bonds
(the bond axes). For most of this paper, we will use the value @ = cos™(—1/3), which
does appear as a bond angle in molecular conformations. This particular value of « is
the bond angle at an sp® carbon and is the bond angle hetween two carbon-hydrogen
bonds in methane [4]. The results we discuss here are summarized in the following
theorem.

Theorem 1 ( [1]) The cos™'(—1/3)—regular stick number of the trefoil knot is 11,
and the cos™'(—1/3)—regular stick number of the granny knot is 16.
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A key ingredient to proving this theorem is a lower bound formula [1] for the regular
stick number of K in terms of the angle «v and the bridge index of K. The result
above is proved by constructing such cos™*(—1/3)—regular conformations and then
by noting that 11 and 16 are the lower bounds for bridge index two and bridge index
three knots, respectively, We describe the construction of the knot conformations
below.

Constructing the Knots. We now provide a brief overview of the process we fol-
lowed to construct regular conformations of the trefoil and granny knots. Before using
any computational technology, we began by physically constructing the knots using
molecular modeling kits [3]. This physical approach guided us to choose reasonable
parameter values once we began to use Derive and Maple. The process we used to
obtain the regular conformations of the trefoil and granny knots followed the same
general strategy and began the same way, which we now describe explicitly in the
case of the trefoil.

Let a = cos™'(—~1/3). To show the existence of an eleven-stick a—regular con-
formation K, of a right-handed trefoil knot, we first denote the eleven vertices of
K, by wo,v1,...,v10. We denote the stick joining vertex wi_1 to Vjmoed 11) by €;
where 7 = 1,...,11. For each e;, we denote the vector from v;_; t0 Vjimoq 11) by
e;. We will construct seven of vertices (and the connecting sticks), and obtain the
remaining vertices by a rotation of 7 about the y—axis. Let R : R* — R? de-
note this rotation, which in coordinates, is represented by R(z,y,z) = (—z,y, —2).
To begin, let vg = (0,0,0), v; = (0,cos(c/2),sin(e/2)) = (0,v/3/3,v6/3), and
vig = R(v1) = (0,v/3/3,—+/6/3). Notice that ||e;|| = ||ejo]| = 1 and Zvjvgvie = .

We then successively determine the vertices vq, v3, ¥4, and vs as follows. Assume that
v; is determined for 0 < j <4 and that ||e;|| = 1 for 1 < j <. To ensure that the
angle Zv;_jv;v;41 between e; and e;41 is v, we observe that vy must lie on the circle
of radius sin(a) centered at the point ¢; 11 = v; — cos(w)e; lying in the plane F;, which
is orthogonal to e; and passes through ¢;;. Let e; = (a;, b;, ¢;). We set

(1,0,0) if a2 + b2 = 0,

(vt i 0) il 40270

Quipi(t) = {

and
(0,1,0) if a§+b3 =0,

it (B) = e b - ' :
wnl®={ (i e ) wd ot 50

where —m < ¢t < 7. Now < 1 ;-1.42,+1,€, > is an orthonormal basis for R? such
that 1 ;41 X 2441 = €; and that q; ;41 and gz;41 span the plane parallel to £ passing
through the origin. We now parametrize the circle of unit vectors orthogonal to e; by

NV 1 (t) = cos(t)dy -1 + sin(t)qe 41, where —m <t < 7.
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Now the possible candidates for the vertex v,y can be parametrized by

Vigr = NV (f) + ¢
= sin{a)NV(t) — cos(a)e; + v;

2\/§N

1
Vi+l (t) + —-e; +v;.

3 3
It follows from this recursive process that ||vie1 — vi|| = ||eit|] = 1, for i = 2,....5
and that /v, _jvw; 1 = a, fori=1,2,3,4. Now for i = 2,...,5, let t; be the parame-
ter that determines v; on NV,;. As these four vertices are determined recursively, v
is a function of ¢y, and v; is a function of to,... #;, ¢ = 3,4,5. Similarly, NV3 is a
function of t5, and N'V; is a function of to,...,%;, 7 = 3,4, 5.

This is where Derive and subsequently Maple became important tools in this investi-
gation. Calculating the coordinate of each vertex v; by hand would be unwieldy and
inefficient. Instead, we programmed the formulas above to calculate (approximations
of) the coordinates of the vertex v; in terms of the parameters ts,¢3,...¢;. At this
stage of the project, Derive was able to compute the vertices, but Derive was notice-
ably slow when computing v; for ¢ > 5. Maple was able to do the same computation
with the same code almost instantly.

The remaining vertices vg, ..., vg are be determined by the rotation R: vg = R(vs),
vy = R(vy), vg = R(vs), and v; = R(va). As vg,...,vy are determined via an isom-
etry of R3, it follows that |le;|| = 1, for i = 7,8,9,10, that /v;_jvv.41 = «, for
i=17,8.9,10, and that /v1pvgv; = o To show that this conformation is indeed regu-
lar, we still need to find an ordered 4—tuple of values of (2, ¢35, ¢4, t5) so that ||es]| =1
and Zvqusve = . (The rotation R ensures that /vqusvs = Zusvgvz.) The proof will
be complete after finding such a 4—tuple, verifying that the eleven resulting sticks
have no intersections at any interior points of the sticks, and finally confirming that
the resulting knot is indeed a trefoil knot. We will now proceed to demonstrate the
existence of the 4—tuple (to, {3, t4, t5).

At this stage of the process, we went back to our physical models to help us choose
values for the first two parameters ¢4 and t3. We made reasonable “eyeball” esti-
mates for these parameters and input them into our vertex formulas in Maple to see
if indeed these parameters would lead to the intended regular knot conformation. To
check whether or not our estimates were viable, we created a system of two nonlinear
equations in the variables ¢4 and {5, which we describe below. The reason that we
relied on equations in two variables for both the trefoil and the granny knot (for which
need additional parameters) is that we can easily plot functions of two variables in
Maple and observe whether or not we have a solution. When it appeared that a
solution did indeed exist, we then solved our system numerically. It turned out that
our expressions below were too complicated for Derive to compute and plot. Maple
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still could take over ten minutes to complete these calculations and subsequent plots.

Let ky = —1.30899693899575 and ks = —1.83259571459404. We use these two num-
bers for ¢, and t3, respectively. (Note that these values are approximations of —57/12
and —7n/12.) The conditions vg = R(vs) and ||es|| = 1 imply that vs must lie on a
circle of radius 1/2 that is centered on the y—axis and lies in a plane perpendicular
to the zz—plane. That is, the distance from v; to the y—axis must be 1/2. We define
a function

1
Lty ts) = (vs(ks, ks tats)e)” + (vs(ka, ka, tay ts)2)” — =
4

The two conditions above are satisfied when L(t4,%5) = 0. Assuming L(t4,t5) = 0,

we now have ||es|| = ||eg|]| = 1. Hence, the law of cosines implies that the condition
Lugusvg = « is equivalent to the condition ||vg — v4]] = 2\/6/3, We now define a
function
8
Aty ts) = |lvg — val]® - 3

= (va(ko, ks, ta,ts)s + vs(ko, ky, ta, t5))
+(va(ka, kg, tas ts), + vsko, k3, ta, t5)2)”

+(valka, ks, ta, ts)y — vs(ke, ka, ta, t5),)° —

S wlw

The angle condition is satisfied when A(t4,t5) = 0 and L(f4,t5) = 0. On the rect-
angle [—2.1628, —2.1627] x [1.0274, 1.0276], a solution to the system of equations is
ty = tf ~ t) — 2.16271575011929 and t5 = ¢ ~ t; = 1.02754761268067. This now
proves that the conformation K, is indeed regular. At this stage, we have not yet
shown that nonadjacent sticks are disjoint, nor have we shown that K, is indeed a
conformation of a trefoil knot.

We next must show that the eleven sticks in the conformation /i, do not intersect
each other at any interior points of the sticks and that K, is indeed a conformation
of a trefoil knot. We do this by considering an approzimate a—regular conforma-
tion, denoted by K, and showing that K, has the two desired properties and that
K, can be deformed to K, without introducing any self-intersections throughout the
deformation. The conformation K, is determined by vertices vf, v{, . . ., v}, as follows.
First vf = vy = (0,0,0). For i = 1,2,3,8,9,10, v; is obtained from v; by rounding
each coordinate of v; to thirteen decimal places. Note that for each of these six values
of i, corresponding coordinates v; and v} differ by no more than 10712, Now v} and v
are obtained by rounding vg(ka, ks, t}) and vs(ko, ks, £}, t5) to thirteen decimal places,
respectively.

We then input the coordinates of K, into KnotPlot to view a projection of K,, which
was readily seen to be the right-handed trefoil knot. (KnotPlot can also confirm that
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Figure 1: The 11-stick trefoil K, created with KnotPlot [5].

Figure 2: The 16-stick granny knot K, plotted with KnotPlot [5].

this is the right-handed trefoil knot by computing the HOMFLY [2] polynomial,
which is a good (but not complete) knot invariant. Several technical lemmas were
then needed to confirm that since K, is indeed a trefoil knot, then so is K,.. Below
are figures of the trefoil knot and granny knot created with KnotPlot.
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