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A demonstration of the use of technology in teaching optimization in a multivariable
calculus course comprised one segment of the mini-symposium entitled Optimization in
Mathematics at the 17th Annual International Conference on Technology in Collegiate
Mathematics. This paper provides a summary.

A one-semester course on linear programming is offered as an elective at Francis Marion
University. Thus it is possible that a mathematics graduate’s exposure to topics in
optimization is limited to optimization in the single-variable setting during first-semester
calculus and multivariable optimization later in multivariable calculus. When teaching
the multivariable calculus course at Francis Marion University, little time is available for
optimization due to the multitude of topics usually presented in one semester. An
elective course in nonlinear programming is to be offered beginning in the next semester
to address this problem.

In the mathematics department at Francis Marion University, MAPLE is used extensively
to aid in teaching and problem solving. MAPLE (or any of several other powerful
computer algebra systems) is particularly useful in teaching multivariable calculus
because of its 3-dimensional graphics capabilities. In addition to plotting, MAPLE offers
many sophisticated tools for numerical and symbolic determination or manipulation of
various mathematical constructs in multiple dimensions such as vectors, dot products,
cross products, tangent vectors, gradients, directional derivatives, partial derivatives, and
multiple integrals, to name a few. Examples of a few of these follow.

Throughout the discussion of optimization in more than one variable, it is helpful to
consistently refer students to the simpler corresponding concepts from first semester
calculus with which they are already familiar. For example consider an introduction to
terminology relating to optimization of functions of two variables. Critical numbers,
relative and endpoint extreme values, and inflection points can be compared to stationary
points, relative extreme values, boundary point extreme values, and saddle points. Three-
dimensional (3D) plots are essential in helping students understand these concepts.

Figure 1 shows a plot of f(x,y)= (x2 +3y2)e"(x +?)
viewing from any perspective. This function presents a relative and absolute minimum at

, which can be rotated to allow

214



(0,0,0), relative and absolute maxima at the
points (0,-1,1.104) and (0,1,1.104), and
saddle points at (-1,0,0.368) and (1,0,0.368).
Figure 2 shows the trace of function f(x,y)
in the x-z plane and Figure 3 shows the trace
in the y-z plane. In this example, MAPLE
plots in the plane and in 3-space are used to
ensure a thorough understanding of
beginning concepts in  multivariable

optimization. Figure 1. A plot of the function

Fy) = (52 +3p2)e
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Figure 2. A plot of the trace of the function . .
(+y?) Figure 3. A plot of the trace of the function

fx,y)= (xz +3y2)e‘ " in the x-z plane. Flay) = (x2 . 3y2)e_(xz+yz)

in the y-z plane.

Although students are required to demonstrate a thorough understanding of the second
partials test and its use by solving problems using the pencil-and-paper method, use of
MAPLE is also required. An example follows. In the steps shown in Figure 4, MAPLE is

used to define the function f(x,y)=x"+y*+2xy—4x-3y+5. Subsequently Zi,
X
2 2 2
@’8{, af’anda{
oy ox Ox0y oy
MAPLE. Finally, MAPLE’s command fsolve is used to determine two simultaneous

o and ai=0.

solutions to — =

Ox oy
(34
376 )

are determined and rendered as functions of x and y in

The result is two stationary points: (1,%) and
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>fi=(x,y) > (x"3+y"2+2*x*y-4*x-3%y+5) :

> fx:=unapply (diff (f(x,vy) ,x) ,%x,y):

> fy:=unapply (diff(£(x,y),y) ,X,¥y):

> fxx:=unapply (diff (£ (x,vy) ,x,x) ,x,y):

> fxy:=unapply (diff(f(x,y) ,x,y) ,%x,y):

> fyy:=unapply (diff (£ (x,y),y,y¥) ,x,¥):

>fsolve ({fx(x,y) , fyv(x,yv)},{x,v},{x=-3..3,y=-3..3});
>fsolve({fx(x,y) fy(x,v)}, {x,v},{x=-3..0,y=-3..3});

{x = 1.000000000, y = 0.5000000000 }
{y=1.833333333, x =-0.3333333333}

Figure 4. MAPLE commands needed to find the stationary points for function
fx,y)=x>+y* +2xy—4x-3y+5

Next attention is turned to the determination of the nature of the stationary points. (See

Figure 5.) MAPLE’s command hessian is used to evaluate the Hessian matrix for f(x,y)
. : 1

at the first of the two stationary points (1,5). Subsequently, MAPLE’s command de?

computes the determinant of the Hessian matrix evaluated at the stationary point. This
value f..f, —(f, f, which is called “bigD” below, is the well-known value of the

> hessian(f(x,y), [x,v]);

6x 2
2 2
> H;zsubs({x=1.0,y=0.5},hessian(f(x,Y) ’ [XIY]));
60 2
H=
E
> pbigD:=det (H) ;£xx(1,0.5) ;

bigD := 8.0
6

Figure 5. MAPLE commands needed to determine if a stationary point for
function f(x,y) = x> + y* + 2xy —4x -3y + 5 corresponds to an extreme
value or a saddle point.
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second partials test. Since f, f,, —(f )2 >0 and f, >0, the first stationary point

xy

1 ) . . :
(LEJ yields a relative minimum value for the function — namely, % The second

stationary point [—%,1—61-) was treated similarly, and a saddle point was found at

(— %’1_61’%} A plot of the function with arrows pointing out the relative minimum at
1,1,Z and saddle point at| — l,E,ﬂ is shown in Figure 6.
2 4 3 6 108

In the next example, a MAPLE 3D plot is
used to help students visualize and better
understand an optimization problem in
which boundary points must be considered.
The problem is to find extreme values for
the function f(x,y)=x>-2xy+2y on or
within the rectangular boundary described
by: {(x,y)|0<x<3,0<y<2}. After
solving this problem with pencil and paper,
various MAPLE plots were generated, the
last of which is shown in Figure 7.

Figure 6. A plot of the function
fe,y)=x"+y* +2xy—-4x-3y+5
showing locations for the relative

17

minimum (1, j and saddle point

111317
36 108

Recall that, while using MAPLE,
the plot can be rendered from any
perspective. This helps students

2 4

34 ® * visualize the surface, the
Figure 7. A plot of the function rectangular ~ boundary  lying
f(x,y)=x*—2xy+2y showing the rectangular below the surface, and even the

projection of the planar,
rectangular region onto the
surface as shown in Figure 7.

region in the x-y plane and pointing out four
extreme values — three corresponding to boundary
points and one to an interior point of the region.
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As a final example, consider how MAPLE can be used to aid students in understanding the
concepts underlying the use of Lagrange multipliers for optimization. The optimization
problem is to find all extreme values for the function f(x,y)=xy subject to the

constraint x* + y*> =1 using the method of Lagrange multipliers. Figure 8 shows a plot

of the function, the constraint, and the corresponding space curve lying on the surface
representing the function. Note that the user can make it visually easy to distinguish
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among the different plots by setting
the colors of the components of the
MAPLE plots. The plot in Figure 8
helps students clearly understand the
objective of the optimization
problem. Plots of the constraint in
the x-y plane superimposed on level
curves of the function are easy to
create as well.

Animated plots can also be generated
using MAPLE. Such a plot for
f(x,y)=xy is shown in Figure 9.

Figure 8. A plot of the function f(x,y)=xy,
the constraint x* + y* =1 in the x-y plane, and
the corresponding space curve on the surface.

Although it cannot be shown here,
the level curves shown in that figure
are animated to appear one-at-a-time

sequentially for decreasing values of
ceR in f(x,y)=c. This helps

students see that an extreme value for f'is possible whenever a level curve first becomes
tangent to the constraint curve — that is, when the gradient vector for the function and the
gradient vector for the constraint are parallel. In this example, the function f assumes a

—

Figure 9. One of a sequence of plots
comprising a MAPLE animation that
shows level curves for f(x,y) = xy

first touching the constraint curve given

by x* +y* =1.

maximum of 0.5 when (x, y) = (.707, .707) and
(x,y)=(-707,-.707). A similar animation
was used to reveal a minimum of —0.5 when
(x,y) = (=.707,.707) and (x,y) = ( .707, - .707).

These examples show how a computer algebra
system like MAPLE can be used to greatly
enhance visual presentations for the classroom
when discussing optimization. The author has
used similar graphics throughout a course in
multivariable calculus and in other courses as
well. The powerful mathematics tools offered
by most computer algebra systems can also be
used to solve problems that prove too difficult
for pencil-and-paper solutions.
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