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A classic puzzle assumes that the earth is a perfect sphere and a steel band is stretched
around the equator. If six feet is added to the band, which is adjusted to a uniform height
above the earth all the way around the equator, how large of an object could be slipped
under the adjusted band, a playing card, a marble, a baseball, or a basketball? Since the

ratio a circle’s radius to its circumference is 2n , the answer is that the band will be over
11 inches off of the surface and hence a basketball will fit under. A circle satisfies

271 Ar = AC , whereris the radius and C is the circumference. A natural question is how
this relationship might change for other curves. Let C be a plane curve defined by the
parametrization C ={<x(t), y(t)>: a<t<b} .Theexpanded curve, C,, fora positive

real number ¢, is the curve obtained by traveling e from C along a normal. That is:

Iy !

C, =1 <x(t), y(t)> + e[ <y, X (t)>): ast<bp={<x(t), y()>: a<t<b]
Vx (O +y

We have chosen the normal that points outward for a counterclockwise traversal of a circle.

Dependingon < x(t), y(t) > , this could, however, represent an inward pointing normal

and a “contraction”. The change in arc length from C to C, is then given by
b

AL = [ * (%07 +y@ - x 'O +y ) dt .
a

Evaluation of arc length integrals by hand is normally difficult, except for carefully chosen
curves. Maple makes graphing and approximating arc length for various curves relatively
easy. The following curves illustrate a variety of behavior.

Example 1: Anellipse. Let C= {<2cos(t), 7sin(t)>:0 <t < 2n} . UsingMaplewe find

that, for all tested values ofe, AL/e=2m .

Example 2: A segment of a parabola. Let C= {<t, t?>:-2<t<2} . For this curve

we find that, for all tested values ofe, AL/e =2.651635328 .
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Example 3: A limacon. LetC=
{<cos(®)(7 +6sin(0)), sin(0)(7 + 6sin(0))>:0<0<2n} . We find that, although

AL/e =2 for small values of e, as e increases AL/e appears to increase. Once

graphed we see that the expanded curve exhibits doubling back for larger values of € when
the normal points “inward” at the dimple.

Example 4: A cycloid. LetC= {<zn -0 +sin(8), 1 -cos(8))>:0<0<2xn} . Using

Maple we find that, regardless of the value ofe, AL/e~=x .

Example 5: A 4-leaf rose. Let C =
{<cos(B)(sin(20)), sin(6)(sin(20))>:0<0<2x} .

We find that, for all tested values of e, AL/e = 18.84955592 = 6w .
Example 6: Infinity. LetC= {<sin(t), sin(2t)>:0<t<2xn} . We find that, for small

values of e, AL/e =0 . Larger values result in the doubling back behavior we saw in

Example 3, and a non-zero value.

Example 7: A sine wave. Let C = {<t, sin(t)>:0<t<2n} . For values of e<I,
AL/e =0 . e>1 results in the doubling back we saw earlier, and a non-zero AL/e
We can see that, while AL/e isn’t completely random, it varies with some properties of
the curve. If the normal is pointing “outward”, then AL/e doesn’t vary with e. If the
normal points inward, then, for large e, there is “doubling back” and AL/e does vary

withe. AL/e doesn’t vary for small values of e.

We now look at some general results that help to explain the behavior we have just seen.
Although using vectors from a parametrization is the most general approach, we will first
look at the special case of a function y = f(x), since the ideas involved are accessible at a
lower level. The reader is encouraged to return to the appropriate examples following each
theorem to see how each explains the experimental behavior found viaMaple. By applying
the theorems one can also determine how a more general class of curves would behave.

Curves Defined by Functions
We can parametrize a segment of a functionas C ={<t, f(t)>: a<t<b} . Then
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be done with Maple or by hand) we then find that:

IV 1 ¢
(1 +f/(t)2)3/2 an ye() () © (1 +f/(t)2)3/2 )

C. =<t f(t)>+ e( J ast<hb . After some computation (which can

xe/(t) =1+e

Note that f/(t) = ye/(t)/ xe/(t) . This observation helps in evaluating:

AL = [ (/0 +y/07 - x Oy (07) dt

= [P (%0 + (O £ - VI EOD at= [ (x| - YT+ 7 )t

/ "
Checking the sign of xe/(t) and noting that f EREUN dt = tan"!(f/(x)) + C yields:
1+ f/(t)?

Theorem 1: Let y = f(x) and its first and second derivatives be continuous on [a,b].

l\2 \3/2
Assume that for all x€[a, b] , f(x)>0 or ex< —w . Then
£7(x)

AL/e = tan"{(f'(b)) - tan"\(f(a)) .
The conditions for xe/(t) >0 arenatural. f(x) >0 implies the curve is concave up so
the normal points out. If f”(x)<0 the normal points in. For f"(x)<0
e<-(1+f(x)*)?/f"x) requires that e < the radius of curvature. Noting

tan"'(f(x)) = the tangent angle to f at x leads to an alternate expression of Theorem 1:

Theorem 1: Let y = f(x) and its first and second derivatives be continuous on [a,b]. If
e is less than the radius of curvature at all points of downward concavity in [a,b],

then AL/e is the change in the angle of the tangent to the curve from x =ato x =b.

For curves with vertical tangents we may use improper integral techniques to show:

Theorem 2: Let y = f(x) and its first and second derivatives be continuous on (a,b), fbe
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vertical at a and b, and for all x€[a, b] , f(x)>0 or e<-(1+f(x)*)*?/f"(x) .
Then AL/e depends onlyon the concavity of fat the endpoints. Upward concavity near
an endpoint contributes +m/2 to AL/e ,while downward concavity near an endpoint

contributes -m/2 to AL/e .

Curves Defined by General Parametrizations
More generally let C ={<x(t), y(t)>: a<t<b} and

/ /
C, ={<x(), yi)> +e| X0 X (t)>]: a<t<bp=(<x(), y)>: ast<b) .
( Vx (O +y (1

After some computation (which can be done with Maple or by hand) we then find that:
AL/e = f PCCIM@®) | - DYx @2 +y/(0)? ) dt where
a

M(t) =1 + e (x()y"(t) - x ")y )/ (x(t)* + y'(t)>)*? . Examining M(t) and noting

d(tan”'(y'® /x ‘t))/dt = (x ©y"©® - x"©Oy )/ (x' (O +y'(H*) yields:

Theorem 3: Let x(t) and y(t) and their first and second derivatives be continuous on [a,b].
Assume x’(t) is nonzero on [a,b]. If e is less than the radius of curvature at all points in

[a,b] at which the tangent slope is decreasing, then AL /e is the change in the angle of
the tangent to the curve fromt=atot=b.

This theorem can be modified using improper integral techniques to handle curves for
which x’(t) is zero at finitely many points of [a,b].

Theorem 4: Let x(t) and y(t) and their first and second derivatives be continuous on [a,b].
Assume that the curve is vertical at only finitely many points of [a, b] and that e is less than
the radius of curvature at all points in [a,b] at which the tangent slope is decreasing.

Then AL/e isthe sum of the following:

1) + or - the angle of the tangent to the curve at any non-vertical endpoints, + at b, - at a.

2) +m/2 for every one-sided neighborhood of a point of vertical tangency in which the

slope increases.

3) -m/2 everyone-sided neighborhood of a point of vertical tangency in which the slope
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decreases.

Vector Considerations
Many of these ideas can be viewed from the standpoint of vector calculus. Let C be defined

. =/ / /
bytheposition vector T (t) = <x(t), y(t)> .Then T(t) = ro _=x®y0O> and

GRSy

N - YO x'©>

Vx O +y'®?

the position vector T, (t) =7(t) +e¢ N(t) and

are tangent and normal vectors. The expanded curve is given by

AL=[PUEOI-1FODe = [*UFO+eN'©f - 1701

Note that N(t) is a unit vector, and hence is orthogonal to N /(t) and also T(t) .

Hence ﬁ/(t) and t/(t) are parallel and N/(t):S(t)f’(t) ,

. Hence

where S(t) = x 'Oyt -x"Oy'®
(X /(t)z +y /(02)3/2

AL=[P(IF'®) +e SOTOI-ITOd= [*(|1+eSO [ -DIT'®) dt .
Fornon-negative 1 +eS(t), AL= fab leS®) | IT/(®)] dt=e¢ fab IN'(t) |dt and wehave
theinvariant AL/e = f ab IN /(t) ldt . Since | N /(t) | istherateof change of the tangent
angle, when the integral is not improper, AL/e is the angle the tangent turns through.

Further Problems
One could investigate particular classes of curves, such as those presented in polar form.
We have not discussed when C, is discontinuous, which is not hard to produce examples

of. We have also not developed the case in which AL/e isnotinvariant. For example,

is there a limiting value as e goes to infinity? Another direction to take is to generalize
these ideas to three dimensions. One could examine how the arc length changes for curves
expanded along the principal normal. Another question is how surface area changes when
a surface is generated by following the principal normal to produce another surface.
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