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This NSF-funded project (DUE-0230755), currently in its second year, is focused on the
development of pedagogically sound computer-based tools for teaching and learning
mathematical proof.

Motivation

In order to evaluate the validity of proposed explanations, students must develop enough
confidence in their reasoning abilities to question others’ mathematical arguments as
well as their own. In this way, they rely more on logic than on external authority to
determine the soundness of the mathematical argument. (NCTM, pp. 345-346)

Even though, as Steen writes, “Nothing divides research mathematicians and
mathematics educators from each other as do debates about the role of proof in school
mathematics™ (Steen, p. 275), the NCTM has long been an advocate of reasoning and
proof in K-12 instruction. The NCTM Principles and Standards for School Mathematics
specifically states that, “Reasoning and proof are not special activities reserved for
special times or special topics in the curriculum but should be a natural, ongoing part of
classroom discussions, no matter what topic is being studied.” (NCTM, p. 342) Steen
further suggests that, “The important question about proof may not be whether it is
crucial to understanding the nature of mathematics as a deductive, logical science, but
whether it helps students and teachers communicate mathematically.” (Steen, p. 275)

Certainly for the teaching of mathematical proof to be successful in the K-12 curriculum,
the teachers at that level should be confident about mathematical reasoning and
communication in many forms. A teacher must be able to listen to a mathematical
argument, in any form from the empirical to the precise, and give adequate feedback as to
the argument’s correctness and clarity. To do this, it is essential that teachers know how
to read and write mathematical proofs in a variety of styles.

It is therefore an important time for mathematicians to supply curricula and methods for
best preparing teachers to understand proof at many levels so that the objectives of these
standards can be achieved. To accomplish this ambitious goal, this Educational Materials
Development grant is currently developing computer-based activities to supplement an
innovative discrete mathematics textbook, also co-authored by Doug Ensley and Winston
Crawley, which is the first college course in which students at Shippensburg University
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encounter formal mathematical proof. The goals and objectives of the development of
this material are as follows:

o To strengthen students’ understanding of the logic of implicational (“if...,
then...”) statements.

To teach students to read a formal proof as an interactive dialog.

To develop new tools for teaching students how to write proofs.

To contribute to the literature on teaching and learning mathematical proof.

To train others to use the technology tools to implement the same ideas in other
courses.

The nature of the material itself is fairly simple. It is based upon the basic idea that
students need to learn to understand logic and read proofs before they can write proofs.

Applications under development

The following summarizes the actual types of activities being developed and currently
being tested. The interested reader is directed to the website reference to try out the
activities or for more information. (The website is organized into sections based on the
Ensley/Crawley text, but the material may be used independent of that text.) At the 2004
ICTCM we emphasize material developed during the second year of the project —
specifically, material for proof by contradiction and proof by induction.

CounterExamples. This is a collection of mathematical statements that a student must
read critically and decide if each statement is true or false. If the statement is false, the
student must provide a counterexample. This encourages students to construct their own
understanding of truth or fallacy, and it establishes a point of view from which to write
proofs of statements they believe are true.

ProofReader. To understand mathematical proof, one must be able to first effectively
read mathematical proofs. Under this simple premise, we will develop a second Flash
application in which students “trace” through a formal proof and respond to each
statement therein. This process is not unlike the debugging process that is done in
computer programming, but our main objective is for students to see mathematical proof
as an interactive dialog between author and reader. Within this general format, we have
“incorrect proofs” of false statements as well as “incorrect proofs” of true statements.
This twist connects with the type of discovery practiced in the CounterExample
exercises, and it also gives students a tool by which they can discover particular errors in
a proposed proof.

Shuffled Proof. To further encourage students to read proofs for mathematical content
and logical understanding, we have created some simple examples of proofs where the
lines of the proof are presented in a scrambled order. The student must “drag” the
statements into the correct order to complete the exercise. Figure 1 (next page)
demonstrates a proof by contradiction that the student has begun to unscramble.
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Drag the giver lines to form a correct proof of Pr .
the claim below. Check your proof before OOf Scrambler

continuing to the next problem.

m imza_, we conclude &Eaaﬁ ;m = ?kz 1

But this means that
There arc mmgm k mﬁi

Claim. H#™ - 1 is divisible by 3, then » is not dwxsnble bv 3
Proof. .

Click “Next” to go on to the pext sistement.

Figure 1 — Proof scrambler

Marthematical induction. “Proof by induction™ 15 a fairly specialized technique that is
very important in the discrete math course. Once again we take advantage of technology
o help students create their own understanding of the process. The technology 15 used
first to reinforce and enhance the students” ability to reason recursively, both for
recursively defined sequences and for summations. In class, we use tabular layouts
similar to these to help the students learn to calculate recursively:

| n E‘.:.'-I:Eartih-'l: formula - " [ Recursive formula
=2 a8, = dy + In gy =2 .= g + 20

| |2 | 2
[212+2.2=2+4=6 2 |2+2.2=2+4=6
_3 3 - EJ G+h=12 3 G+2 . 3=ha+6=12
_4 12+2-4=12+3=20 4 12+2 . 4=12+8=20

T B Tyre

0| a+2.30=,., m-1 g+ 2-(m=1)m .

930 . =" —m
- . - B | 1 &
I g+ 231 =(doit) | m Ay + 2 - m={do it) |
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Later, we extend these ideas to verifying that a given recursive formula and a given
closed formula describe the same sequence. In class, we use table layouts similar to the

following, again beginning with the concrete:

n Recursive formula Closed formula Are they the
a=2,a,=a,t+2n an=n2+n same?
1 2 F+1=1+1=2 Yes
2 2+2.2=2+4=6 2P+2=4+2=6 Yes
3 6+2-3=6+6=12 3¥+3=9+3=12 Yes
4 12+2-4=12+8=20 4 +4=16+4=20 Yes
30 ap+2-30=... 30° + 30 = 900 + 30 Yes
=930 =930
31 ap+2-31=(doit) 31° + 31 =(do it) 297
and moving toward the abstract:
n Recursive formula Closed formula Are they the
a1=2,a,=ay1t+2n a,,=n2+n same?
1 2 P+1=1+1=2 Yes
2 2+2.2=2+4=6 2+2=4+2=6 Yes
3 6+2-3=6+6=12 3*+3=9+3=12 Yes
4 12+2-4=12+8=20 4 +4=16+4=20 Yes
m-1 auo+2-(m-1)=... (m=1)* + (m-1) = Yes
=m —m =m2—m
m  au,t2-m =(doit) m +m 279

The technology provides an interactive setting for the student to work with this table-
based visual model for recursive thinking and for proof by induction. Figure 2 (next

page) illustrates the use of the technology for one of the concrete calculations.

Conclusion

We are very pleased with the preliminary results and we are looking forward to further
development as well as continued research into the way students learn mathematical

proof.
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Eroblam. Given the recurzive forome a[1] = 2, aln} = aln-1] + 2n, verily
that the clozed fomuls n* + 2 gives the same sequence,

Solution. o sin} en equal?

2+ %2=6 22 + 2

2 =8 ™=
3 6+ 6 =12 32 +3 =12 s
+ 12 +3 = 20 2 + % = 20 s
. 5 m+=10 §%2 + 5 = 10 s
5 30 + 12 = i 62 + 6 = 42 ms
i 7 £ +12=-56 7% +7 =56 ==
. 8 6+ 18 =72 22 +8 =72 fus
¥ 73 4+ 18 = 80 543 + 8 = 50 ™=
| 10 om0 + 20 = 110 1otz + 10 = 110 s
L 11 1w + 22 = 132 11z + 11 = 132 yos
12 132 + 24 = 1Sk 12°2 + 12 = 156 ye=
{13 156 + 26 = 182 13°2 + 13 = 182 -
. 12 182 + 28 = 210 132 + 1% = 210 ™5
. 15 210 + 30 =280 i15°3 + 15 = 240 ==
L 16 240 4+ 32 = 272 162 + 16 = 272 s
&

F 1l I the biaks, the b press NEXT STER.
The reCHs e HmiBgles

[T =21 +2 17 - L+ 24 =277

Answers:

NEXT STEP @

Figure 2 — Proof by induction
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