Introducing Topology through Simulations
of Knot Tying and Band Forming Activities

Lisa E. Marano
West Chester University of Pennsylvania
Department of Mathematics
West Chester, PA 19383
e-mail address: Imarano@wcupa.edu

I. Introduction.

In the Spring of 2004, I began an independent research project with a pair of
undergraduate mathematics education majors. The students, Matthew Davis and Meghan
Kelley, and I meet once a week. Being sophomores, they had recently completed three
semesters of Calculus and Linear Algebra and were enrolled in Differential Equations,
and Modern Geometry. In addition, Matthew had taken a course in Probability and
Statistics. At this time, neither student had a course in Point Set Topology or
Combinatorics.

The following summary of an article appearing in the November 1997 issue of the
College Mathematics Journal provides the motivation for the students’ project. Kathy
Liebars wrote a Classroom Capsule titled “Loopers” detailing a classroom activity
designed for students in an introductory probability and statistics course. With students in
groups of two, have one student hold three strings in her closed hand. The other student
randomly ties pairs of string ends together until every pair has been tied. Before the other
student opens her hand, have the students make predictions about what they will see.
Students realize that the result will either be one, two or three loops. The student opens
her hand and records the number of loops observes. The students repeat the activity and
the class tallies the results to get empirical estimates on the probability of getting one, two
or three loops. Finally, the students try to determine the theoretical probabilities and
compare them with the empirical results obtained in class.

Matthew and Meghan worked to generalize this activity. First, they developed a method
to simulate the in-class knot-tying activity described above using n strings. Next they
determined the theoretical results for n strings. Finally, to extend the activity further, they
decided to change the strings to strips of paper and allow the person “tying the knot” to
twist the strip of paper a half turn before attaching it to another random paper end. In this
paper, we will discuss the failures and successes that the students experienced. In
addition, we discuss how the students incorporated technology in finding the solutions to
these problems. Finally, we discuss how the students learned some of the basic concepts
developed in a Point Set Topology course via working on this project.

I1. Empirical estimates for the probability of getting k loops using » strings.

The students began by repeating the experiment described in [1] with four, five and six
strings and computed the theoretical probabilities as well. Table I provides an example of

168

their findings for five strings based on 100 trials as compared to theoretical results based
on five strings.

Table I number of loops obtained | 1 |2 3 4 5
empirical results | 049 | 038 | 0.12 0.01 0
theoretical results | 0.406 0.423 0.148 0.021 0.001

While performing the trials using four, five and six strings, several questions arose. The
students wondered if they should be making a distinction between loops made from just
one string versus loops made from two, three or more strings. This became an excellent
opportunity to explain the importance of having a well defined problem and to introduce
some concepts of elementary topology. In a quest to better define their problem, the
students listed similarities and differences between a loop made from j strings and a loop
made from £ strings. Obviously, they cited that both were loops and the only difference
was in their lengths. They decided that their problem would be to simply count the
number of loops and that the difference in length ultimately did not matter. From this
little activity, they gained a sense of what it means to topologically equivalent.

Another question that came up was: how could they more affectively simulate this
activity? They found through theoretical computations that there were 15 distinct
outcomes when three strings are used; but with the addition of two strings, the number of
distinct outcomes increases to 995. The students realized that using actual strings was
time consuming and not feasible. Thus they decided to write a computer program to
simulate the activity. They used Excel 2000 and VBA (Visual Basic for Applications) as
their development environment.

Before writing the program, the students outlined how the program would generate a
random tying of # strings. Initially, they assumed that if they performed a random shuffle
of the integers 1 through 2n, which represent the 2n string ends, the shuffle would
produce a random tying of the » strings. But a problem occurred when deciding how this
shuffle would be interpreted. They decided on the following algorithm: Let S be a random
shuffle of the digits 1 through 2n. So S = (s,, 52, 53, ...,s,). Next, group the elements in the
shuffle into pairs of two. Thus s; is paired with s., 53 with s, and so on. Each pairing will
represent a knot tying string end s,; with string end s,. This process is illustrated in
Figure 1 below.

Figure 1: Example of Tying using Random Shuffle
Given three strings with ends labeled 1 — 6, consider the following random shuffle of these digits: 2, 3, 5,
4, 1, 6. Grouping consecutive pairs yields: (2,3), (5,4), (1,6). Tie each pair of string ends together.
1
string 1 <
2
3
5
<,

string 3

169

The students realized early on that this algorithm was not easy to implement, for it was
difficult to keep track of which strings were connected and therefore difficult to count
how many loops were formed. After altering the method described above, the students
developed the modified algorithm described below in Figure 2 to simulate the random
knot tying. In addition, Figure 2b demonstrates how this algorithm would be used to
randomly tie together 3 strings.

Figure 2a: Modified Algorithm to simulate knot tying
1. Without loss of generality, assume the random shuffle begins with string end 1; call this the
“loop seed.” Set loop counter to zero.
2. Choose, at random, one of the string ends remaining of 2 through 2#; call this “next number”
and remove “next number” from list.
3. Check to see if “loop seed” and “next number” share the same string.
a. Ifso, add one to loop counter and select at random one of the string ends remaining.
Call this the new “loop seed”.
b. If not, choose the string end that shares the same string with “next number” and call
this “next number”. Remove “next number” from list.
4, If there are string ends remaining, repeat process starting at step 2.

Figure 2b: Using algorithm to randomly tie together 3 strings
1. Start with “loop seed” = 1.

2. Randomly select a number from 2 — 6; “next number” = 3; remove 3 from list of available
string ends.

3. Are “next number” and “loop seed” from the same string? Nope! So select string end that
corresponds to string including “next number”. New “next number” = 4 and remove 4 from list
of available string ends.

4. There are strings remaining, thus randomly select a number from 2, 5 and 6.

“next number” = 2.

5. Are “next number” and “loop seed” from the same string? Yes! Increment “loop counter”.
Randomly select a number from 5, 6. “loop seed” = 5.

6. Chose last remaining number; “next number” = 6.

7. Are “next number” and “loop seed” from the same string? Yes! Increment “loop counter”.

They incorporated this algorithm into their VBA program and we include, in Figure 3, a
sample of the output generated by their simulation program.

Figure 3: Sample Output
Input Joutput
Number Number Number Number of
of Strings of Trials of repetitions | loops formed Rep 1 Rep 2 Rep 3 ...Rep 39 Rep 40 Totals Proportion
10 250 40| 1 70 87 60 65 85 2936 0.2936
2 96 91 106 92 104 3966 0.3966
3 65 56 54 59 40 2257 0.2257
4 18 13 25 29 16 707 0.0707
5 1 3 4 5 5 115 0.0115
6 0 0 1 0 0 19 0.0019
7 0 0 0 0 0 0 0
8 (] 0 0 1] 0 0 0
9 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0

I11. Determining Theoretical Results.
Convinced that their algorithm worked, they wanted to see how well it worked compared
to theoretical results for large values of n. We continued to meet weekly throughout the

170

summer with the goal of determining the probability distribution for the number of loops
created using » strings. The students realized that there was a link between the different
ways they could make k& loops using » strings and all distinct sequences of positive
integers of length k£ whose sum is n, see Figure 4 for example. This was their first
meaningful introduction to mathematical research and how serendipitous it could be.

Figure 4: Example of the Relationship between Loops and Partitions
Given 7 strings, you can create 4 loops by
1. 1 loop of length 4 and 3 loops of length 1,
2. 1loop of length 3, 1 loop of length 2 and 2 loops of length 1, and
3. 3 loops of length 2 and 1 loop of length 1.
The distinct sequences of positive integers of length 4 whose sum is 7 are:
a. 4,1, L1, b.3,21,1),and c.(2,2,2,1).

They determined that each distinct sequence of positive integers of length £ whose sum is

k
n, 4;= (a,.’ ;)H, contributes N; different ways to create k loops where N, is given by the

k-1
following: ¥, =2 [a::)(al,j “1)!(’1;‘1“)(az./‘ _1)!('1 _a;j —_az'j)(a;,j ~1)!... § _,Z:]:ai’j (a,w. —l)!

2,7 3,7
a, .
&, j

Hence, once they’ve found all such sequences A4;, they would simply sum the N;’s. Thus
all they had to do was find a closed formula which would generate all such sequences 4;.

Around this same time, Meghan was taking a course in Combinatorics and stumbled upon
the section of her text titled Partitions. She immediately noticed the link between what we
were working on and what her book described as the number of partitions of » into &
parts. She was disappointed to learn that there is no known closed formula for the number
of k of partitions of n. They both realized that in order to determine the probability
distribution for the number of loops created using » strings, they would have to write yet
another program.

Since they already established how many distinct & loops each sequence 4; would create,
the real work was to produce an algorithm to find all such sequences. They developed a
recursive method of doing so, see Figure 5. This time they used C++ as their
programming language. In addition, Figure 6 demonstrates how the algorithm is used to
generate all partitions of length 6 whose sum is 10.

Figure 5: Algorithm for determining all non-increasing sequences of length k whose sum is n.
1. [Initialize first sequence by setting all & entries to ‘1.
2. [Ifthe sum is greater than n, stop. If not, increment the first element until the sum is . This
becomes the “new” first sequence.
3. Look for the first pair of consecutive numbers that differ by more than one.
a. Ifa pair exists, increment the second by one and set the first equal to the second.
Repeat Step 2.
b. Ifa pair does not exist, go to step 4.
4. Find the first ‘1’ on the list, and increment it by one to ‘2°; and reset all prior numbers in
sequence to ‘2° as well. Repeat Step 2.
5. If there are no ‘1’s left, you’re done.

171

Figure 6: Using the algorithm to determine all partitions of length 6 whose sum is 10.

1. Initialize sequence: 111111

2. Increment first until sumequals 10: 511111

3. Is there a consecutive pair whose difference is greater than 1? Yes, Re-initialize: 22111 1

4. Increment first until sum equals 10: 421111

S. Is there a consecutive pair whose difference is greater than 1? Yes. Re-initialize: 331111

6. Increment first until sum equals 10: 331111

7. Is there a consecutive pair whose difference is greater than 1? No. Then go to first 1, increase
it by one and re-initialize: 222 11 1

8. Increment first until sum equals 10: 322111

9. Is there a consecutive pair whose difference is greater than 1? No. Then go to first 1, increase
it by one and re-initialize: 22221 1

10. Increment first until sum equals 10: 222211

IV. Putting a Twist in the Problem.

As mentioned earlier, after generalizing the knot tying problem to # strings, the students
moved on to strips of papers that would be “tied” together; but before “tying” each pair, a
single twist of one end is allowed. In order to redefine the problem in this context, an
introduction to several concepts from elementary topology such as manifolds, orientation
preserving and orientation reversing paths, orientable vs. nonorientable manifolds,
equivalence relations, among others, was needed. After which, the students decided to
only make a distinction between one-sided (nonorientable manifolds) and two-sided
(orientable) bands. That is to say that all bands with an even number of twists
indistinguishable, and similarly, all bands with an odd number of twists were considered
indistinguishable.

We found that with just two strips of paper, the calculations are a little messy! That is,
with just two strips, you can have: 1) 2 two-sided bands with probability 1/12, 2) 2 one-
sided bands with probability 1/12, 3) 1 two-sided and 1 one-sided with probability 2/12,
4) 1 two-sided band with probability 4/12 or 5) 1 one-sided band with probability 4/12.

Although we’ve added a new twist to the original problem, there is still a connection to
partitions and thus Matthew and Meghan are working to modify their C++ program to
account for the new variation.

V. What next?

After completing this phase of the project, we will work on randomly identifying edges of
rectangles. This will certainly to lead to further discussion of topological properties and
more programming we’re sure!

V1. Bibliography

[1] Liebars, Cathy, “Tying up loose ends in Probability,” The College Mathematics
Journal, Vol. 28, No. 5.

172

