Presenter’s information

Weihu Hong, Ph.D.
Department of Mathematics
Clayton College & State University
5900 North Lee Street, Morrow, GA 30260
Phone: 770-961-3620
Fax: 770-960-5135

Email: weithuhong@mail.clayton.edu

Title
RSA Cryptosystem and Its Applications

Description

RSA cryptosystem is one of the well-known public key cryptosystems in
the world. It can be used to secure communications by using the public
keys as well as to encrypt electronic files by keeping the public key private.
We will discuss how it works and how to make it work.

Abstract

RSA cryptosystem is perhaps one of the most interesting applications of
elementary number theory. It is based on Fermat’s Little Theorem and the
Chinese Remainder Theorem. In order to visualize the process in
classroom, we construct a useful implementation of the cryptosystem by
creating an invertible process: converting each file to a string of digits, then
slice and dice the string into small sub-strings, cipher each of the sub-
strings, concatenate them into a string, and then convert the result into a
string of characters as an encrypted file. To decipher the file, we simply
reverse the process. The implementation can be applied to encrypt
electronic files such as student records, email, and other classified
documents.

124

RSA Cryptosystem and Its applications

Weihu Hong
Department of Mathematics, Clayton College & State University, Morrow, GA 30260, USA

Abstract
RSA cryptosystem is perhaps one of the most interesting applications of elementary number theory. It is based on
Fermat’s Little Theorem and the Chinese Remainder Theorem. In order to visualize the process in classroom, we
construct a useful implementation of the cryptosystem by creating an invertible process: converting each file to a
string of digits, then slice and dice the string into small sub-strings, cipher each of the sub-strings, concatenate
them into a string, and then convert the result into a string of characters as an encrypted file. To decipher the file,
we simply reverse the process. The implementation can be applied to encrypt electronic files such as student
records, email, and other classified documents.

Keywords: RSA Cryptosystem, encrypt, decipher, plaintext, private key, public key.

1. Introduction In this information age, we are facing many challenges. One of the most serious ones
is the increase in identity theft. In the following, we introduce the RSA cryptosystem and demonstrate a
way to construct an implementation. The result can be applied to encrypt electronic files such as
student records, email, and other documents.

2. The Process A plaintext file can be viewed as a long string of characters. The process is as shown in
the figure 1. To encrypt a plaintext file f, the function T converts f into a long string of digits, namely,
T(f). The function E encrypts the file, namely, E(T(f)). The inverse function of T converts the

encrypted file into a text file, namely, T - (E(T(f)). To decrypt the file, it reverses the procedure. The

function T converts the file 7' (E(T(f)) back to the file E(T(f)). Then the decryption function £ '
converts the file E(T(f)) back to the file T(f). Finally the inverse function of T converts the file T(f)
back to the original plaintext file f.

= B —— I ‘l
helrhy 1
A __I_> 12345745054636 | 69BB5T42345T ~ whyisiheswda
L | I
Jr— A STy E B e CEE
T T
Plain Text file Digitized file Encrypled file Encrypted file in
in digital form text form

Figurel an invertible process

In order to insure the security of an encryption, one has to find a good encryption algorithm E such
that its inverse £ is not easily broken. There are many encryption algorithms available such as
Diffie-Hellman Key Exchange, Massey-Omura Encryption, ElGamal Public Key Encryption[ﬁ] , RSA

Public Key Encryption, and Rijndael Encryption Algoritlun[zl’[4]’[5] . Since RSA Public Key
Encryption relies on elementary number theory, it has been a hot topic within mathematical community.
In the following, we show why it works and how we can implement it as a private key cryptosystem.

3. RSA Cryptosystem In 1976, three researchers at MIT, Ronald Rivest, Adi Shamir, and Leonard
Adleman, introduced a public key cryptosystem known as the RSA cryptosystem (from the initials of its

inventors) . The RSA cryptosystem is based on modular exponentiation. The modulus is the product
of two large primesn = p-q.

125

Each individual has an encryption key consisting of the modulus 7 and an exponent e that is relatively
prime to the number (p-1)(q-1). We must produce a usable key. First two large primes must be found.
This can be done quickly on a computer using probabilistic primality tests. We must also in sure that
the product of these primes cannot be factored in a reasonable length of time. This is why decryption
cannot be done efficiently without a separate decryption key.

The encryption function E is given by the following formula
C=EM)=M°modn

Where M is the integer representing a block of characters. The decryption function £ ! is the inverse
of the encryption function E given by

M =E"(C)=C?modn
Where C is the integer representing a block of encrypted message, and d is the decryption exponent.
The public key is (e, n) , which can be published like a phone number. The private key is (d , n) ,
which must be kept in a safe place.

Note: the encryption exponent e and the decryption exponent d are inverses of each other modulo (p-
1)(g-1), namely, de = 1mod((p —1)(g —1)). In order to find the decryption exponent d one has to
factor the integer n, which is very hard if the integer # is very large.

To understand how the RSA cryptosystem works, let us look at the following example.

Example 1. Let p =149,g =151, then n = p-q = 22499, and e = 43. Note that
ged(e,(p —D(g —1)) = ged(43,148-150) = 1. Since d =12907 satisfies the
formula de = 1mod((p —1)(g —1)), it can be the decryption exponent. If the message is "MEET

ME?”, then we might translate each of the characters including the space in the message into its
equivalent ASCII code and then make it into a string of length that is equal to the number of digits of n
(that is 5 in this case) by padding enough zeros in front as necessary. We concatenate these strings of
equal length into one big string in the natural order. We obtain, for instance using the built-in function
Convert. ToInt32(s) in C#, the string 00077000690006900084000320007700069.

We encrypt each sub string of length 5 using the encryption function E and write each result as a string
of length 5 by padding enough zeros in front whenever it is necessary, that is,

E(00077) = 77* mod 22499 = 12018
E(00069) = 69* mod 22499 = 01088
E(00084) = 84* mod 22499 = 15597
E(00032) = 32* mod 22499 = 14266

Therefore by concatenating them in the natural order, the encrypted message is
12018010880108815597142261201801088. We convert this to a text string: Upp{ 01 Up, where the
symbol [] stands for a special character. To decrypt the message, first we convert the text string
UppO O Cp back to 12018010880108815597142261201801088. We then decrypt each sub string of

length 5 using the function £ ! and write each result as a string of 5 by padding enough zeros in front
as necessary, that is,

E'(12018) =12018"" mod 22499 = 00077
E~(01088) =1088'" mod 22499 = 00069

E7(15597) =15597'" mod 22499 = 00084
E'(14226) =14266'*" mod 22499 = 00032

126

Thus, by concatenating them in the natural order, the message is
00077000690006900084000320007700069. We translate each sub string of length 5 into character by
using the built-in function Convert. ToChar(s) in C# and recover the original message “MEET ME”.
Since we make each sub string of equal length, it is easy to loop. It is obvious that the length has to be
at most the number of digits of n.

The reason this works is that it is a result of the Fermat’s Little Theorem, the Chinese Remainder
Theorem, and the congruence theory. We state both theorems in the following. You can find a proof in

any textbook Wof elementary number theory.

Fermat’s Little Theorem. If p is a prime and gcd(p,a) =1, then a”~' =1(mod p).
Chinese Remainder Theorem. Let n,7,,...,n, be positive integers such that ged(n;,n;) =1 for
i # j. Then the system of linear congruences

x=a,(modn,),

x=a,(modn,),

x=a,(modn,),

has a simultaneous solution, which is unique modulo the integer n,7n, <+ n, .

We are ready to show why RSA system works as a cryptosystem.

RSA Theorem. Let p and ¢ be different primes and e be a positive integer such that

gcd(e,r) =1,and d be a positive integer such that de = 1mod(#), where » = (p —1)(q —1).
Let M be a whole number such that M < pg=n. If C=E(M):=M° modn,

then M = E™'(C) = C? modn.

Proof: Since de = 1mod((p —1)(q —1)), there is an integer k such that de =1+ k(p —1)(g —1).
It follows that

d 1)(g-
C* = (M) = M = MDD (mod n).
First, we consider the case thatgcd(M, p) = gcd(M,q) =1. It follows from Fermat’s Little

Theorem that M ™' =1(mod p)and M ¢ =1(modq). Thus,
k(g-1)

€4 = (MY = m = 2 = (7Y = 11 1 = M(amod p)

and
k(p-1)

€4 = (e f =M = e 2 g (190 F 2 1= M(amodg)

Since ged(p,q) =1, it follows from the Chinese Remainder Theorem that C? = M (mod pq) .

Now let us consider the case that either gcd(M, p) >1 or gcd(M,q)>1. Since M < pq, it
cannot be both. Without loss of generality, let us assume that
ged(M, p)>1 and gcd(M,q) =1. As before, it follows from Fermat’s Little Theorem
that C? = M (modgq). Since gcd(M, p) > 1, M must be a multiple of p. Thus, M = 0(mod p).
It follows that

k(q-1)

C=(Me) =M = MDD = a7 P = M0 = M(mod p)

127

thatis, C* = M(mod p). Therefore, it follows again from the Chinese Remainder Theorem
that C* = M (mod pq). Hence, M = C* modn . The proof is complete.

When the RSA cryptosystem is used in communication, for instance, between Alice and Bob, it
works as follows. When Bob wants to send a file to Alice, he finds Alice’s public key (e, r) in the
directory. He encrypts the file M by using the formula
C=E(M)=MF°modn. He sends the encrypted file C to Alice. When Alice gets the file, she
deciphers the file using her private key (d, n) and the formula

M =E"(C)=C?modn.

When the RSA cryptosystem is used privately, the public key becomes private. In order to
simplify the management of keys, it is necessary to build a procedure that automatically recovers the
decryption key (d, n) once users enter the encryption key (e, n). Therefore, users need only remember
the encryption key (e, n). We can implement a RSA cryptosystem to protect electronic files such as
student records, email, and other documents.

4. An Implementation As mentioned above, we are going to keep the public key (e, n) private.
Therefore we deal with small prime numbers only. Thus, we need only remember the key (e, n) and

let the system to solve the other key (d , n) before decryption. To avoid any technical issues of

programming, we are not going to show any actual code but focusing on the ideas. The
implementation is shown as in the figure 2.

I—— Ionping__l |"‘ Iooping.-! | [—- Iooping—]

— L-. T(s) | = L% E(s.n.e) T(s)

M’ﬁ'” - 12345745454636 | 898657423457 whyistheewda
o— e | - — s
—— T-'l(s) L__‘EA(S,I‘I,d) T(S)

Plam Text file I—Iuoping—J Digitized file L—lnoplng——l Encrypled file Lgﬁoping_] Encrypted file in

in digital form text form

Figure2 an implementation process

To implement 7'(s) , we simply apply a built-in conversion function that converts each

character to its correspondent ASCII code, for instance, the built-in function in C# is
Convert. ToInt32(s).

To implement the inverse function 7' (§), we apply a built-in conversion function that

converts each integer to its correspondent character, for instance, the built-in function in C# is
Convert. ToChar(s).

To implement the encryption function E(s, #,€) , we implement the formula
C=E(M)=M°modn by using a built-in modulo function (for instance % is the function in C#)

and looping through each integer bounded by e. We should, however, never calculate the power M ©
directly or it might cause a data overflow.

To implement the decryption function E ' (s, 1, d) , we implement the formula
M = E7(C) = C? mod 7 similarly. Since we keep the key (e, n) private, we need implement a
function GetKey2(n,e) that is used to find the other key (d , n) for decryption. To this end, we need
build another function Factor(n) that will factor the integer # = pq , which is realistic for small

128

integers 71, and use the factors to solve the equation de = 1mod((p —1)(g —1)) ford , which is the

decryption exponent. To make sure the validity of a key provided by users, we need build another
function

CheckKey(n,e), which is a Boolean type function. Furthermore, we need build another function
GetNewKey() that will allow us to make a new key (e, n) .

To apply the process, we may use a visual programming tool such as Java and C# to create a
user interface, and assemble all the components to make it work.

5. Conclusion RSA cryptosystem is perhaps one of the most beautiful applications of pure
mathematics. An implementation of such cryptosystem can be applied to encrypt an electronic file such
as student records, email, and classified documents. Since we keep both keys private, the security of an

encryption depends on the key{e,7). To enhance the security, we might add some random strings to
Typ y ty g

an encrypted file and remove them before decryption. Since it requires significant amount of
calculations, it will take a lot of time to encrypt and decrypt a large file. Therefore, in practice, it works
well for small files. If you look for a faster cryptosystem, you might read [2], [4], [5], and [6] for
solutions.

Acknowledgments. The author thanks Dr. Tony Giovannitti for his many suggestions that improved
this note.

References

[1] Burton, David M., 1989, Elementary Number Theory, the 2nd Ed., WCB.

[2] Susan Landau, 2004, Polynomials in the Nation’s Service: Using Algebra to Design the Advanced Encryption
Standard, the American Mathematical Monthly, Volume 111, Number 2.

[3] Kenneth H. Rosen, 2002, Discrete Mathematics and Its Applications, the 5™ Ed., WCB/McGraw-Hill.
[4] Robinson et all, 2002, Professional C#, the 2" Ed., Wrox.
[5] Bruce Schneier, 1996, Applied Cryptography, Protocols, Algorithms, and Source Code in C, the 2°¢ Ed., Wiley.

[6] Lawrence C. Washington, Elliptic Curves, Number Theory and Cryptography, 2003, Chapman & Hall / CRC.

129

