Using A Script, Programs, and Pictures With the Anscombe Data

Thomas P Kline
University of Northern Iowa
Mathematics Department
Cedar Falls, Towa
50614
thomas kline(@uni.edu

In1973, Professor Francis J. Anscombe published an article in the American Statistician
in which he gave four sets of data that produce essentially the same results under linear
regression and correlation. Professor Anscombe invented these data sets that allow
statistics teachers to illustrate a need to visualize data prior to doing a linear regression.

Francis Anscombe died at age 83 in October of 2001 after a long teaching career that
started at Cambridge in England and ended at Yale in the United States. He also taught at
Princeton for seven years before moving to Yale in 1963.

Some students misuse the correlation coefficient (Pearson’s r) in their analysis of bi-
variate data. Professor Anscombe’s four sets of bi-variate data can be used to help
students understand that Pearson’s r-value should be used in conjunction with other tools
such as a scatter graph and residual analysis and should never be the sole determiner of
linearity.

After years of using these data, I decided to “automate” the process. The use of
programs, scripts and pictures can help any instructor automate the process of
demonstrating the need for more than an r-value by leaving out the calculator steps
needed to produce the linear regression equation, its graph, the value of the correlation
coefficient as well as the coefficient of determination. The justification for this
automation is that at this stage of instruction the purpose is to not concentrate on the
details of doing a linear regression but rather to help wean students from or better yet to
prevent students from developing an over reliance upon the correlation coefficient in their
analysis of data.

This script uses 15 elementary programs and 10 pictures. Each picture uses 3097 bytes
per picture so that all 10 pictures tie up 30970 bytes of RAM. If you are a heavy user of
your Voyage200 or your 92Plus you may run out of RAM due to the amount of RAM
demanded by pictures.

168

The Script that I am using at the present time:

C:cldeloff()
‘List1={10,8,13,9,11,14,6,4,12,7,5}
:List2={8.04,6.95,7.58,8.81,8.33,9.96,7.24,4.26,10.84 4. 82,5.68}

C:LinReg listl,list2:showstat

C:clup()
:List3={9.14,8.14,8.74,8.77,9.26,8.10,6.13,3.10,9.13,7.26,4.74}

C:LinReg listl,list3:showStat

C:clup()
‘List4={7.46,6.77,12.74,7.11,7.81,8.84,6.08,5.39,8.15,6.42,5.73}

C:LinReg list1,list4:showstat

C:clup()
:List5={8,8,8,8,8,8,8,19,8,8,8}
:List6={6.58,5.76,7.71,8.84,8.47,7.04,5.25,12.50,5.56,7.91,6.89}

C:LinReg list5,list6:showstat

C:clup()

C:all4()

C:clup()

C:slopa(11):anspics()

C:clup()

C:slopb(11):anpic2()

C:clup()

C:slopc(11):anpic3()

C:clup()

C:slopd(11):anspic4()

C:clup()

C:alted()

C:clup()

C:cldeloff{):andatal()

C:setGraph(“axes”,”off”)

C:steprs()

C:clup()

SetGraph(“axes”,”on”

Programs used above:

All4()

:Prgm

PxIText “ r =“,10,4:Px|Text string(rrr),10,70

PxIText “r="254:PxIText string(raa),25,70

PxIText “ r =“,40,4:PxiText string(rmp),55,70

PxlText “r="%55,4PxIText string(rpp),55,70

:Pause

:EndPrgm

169

:Alted()

Prgm
:RclPic altel
:Pause
‘RclPic alte2
‘Pause
‘EndPrgm

:andatal()
Prgm

clup()

:DelVar x,y,d
‘bginsc()
:PlotsOff: FnOff
:LinReg list1,list2
:ShowStat
Pause

:endsc()
:EndPrgm

:anpic2()

Prgm

:ClrGraph

RclPic ansc2

PxlIText “r=“30,2:PxIText string(raa),30,51

:Pause
:EndPrgm

:anspic4()
Prgm
:ClrGraph
:ClrDraw

:anpic3()

Prgm

:ClrGraph

‘RclPic anspic3

PxIText “r= “40,2:PxlText
string(rmm),40,91

Pause

‘EndPrgm

:anspics()

Prgm

:RclPic anscl

PxIText “r= “30,2:PxIText
string(rrr),30,91

‘RelPic ansc4:Pxltext “r= “,30,2:PxIText string(rpp),30,41 :Pause

‘Pause

:EndPrgm

:cldeloff()

Prgm

:clup()

PlotsOff

:FnOff

:DelVar x,y,d
:setGraph(“axes”,”off”)
:EndPrg

170

:EndPrgm

sclup()
Prgm
:CltDraw
:ClrGraph
:EndPrgm

:slopa(d)

:Prgm

(d=11

:sum(list])—aaa

:sum(list2)—>bbb

list1*list2—ccc

:sum(ccc)—>ddd

list1"2—eee

sum(eee)—>fif

Tist272—ggg

sum(ggg)—ddd

(11*ddd-aaa*bbb)/(11*fff-aaa"2)->sss

:(bbb*fif — aaa*ddd)/(11*fff — aaa”2)—»iii

:(11*ddd — aaa*bbb)/(V((11*fff — aaa"2)*(11*hhh — bbb 2)))—>rrr
:EndPrgm

:slopb(d); slopc(d);slopd(11)

(similar to slopa but you use list3,etc. in place of list2 and use different variable names.
In place of bbb I used baa but anything not already used will do.)
:steprs()

Prgm

:clup()

:RclPic oner

PxIText “Residual Plot for L.1,1.2”,30,2

:Pause

:clup()

:RclPic twor

Px1Text “Residual Plot for L1,1.3”,30,2

:Pause

:clup()

:RclPic threr

PxIText “Residual Plot for L1,1.47,30,2
:Pause

-clup()

‘RelPic fourr

PxIText “Residual Plot for L5,1.6”,30,42
:Pause

:clup()
:EndPrgm

Note: “oner”,”twor”, “threr”, “fourr” are my names for stored pictures of the residual
plots that I had worked out in advance and then stored as “pics.”

171

