EXPLOITING EUCLID'S ALGORITHM
FOR FUN AND PROFIT

Edmund A. Lamagna
Department of Computer Science
University of Rhode Island
Kingston, Rhode Island 02881

E-mail: eal@cs.uri.edu

Euclid's algorithm for finding the greatest common divisor (GCD) of two integers is
perhaps the oldest nontrivial algorithm that has survived to the present day. GCD
computation is at the heart of every computer algebra system. Find a better way to
compute polynomial GCDs and you can build a faster computer algebra system.

We consider how the basic and extended Euclidean algorithms for polynomial GCDs can
be efficiently implemented in a CAS. We also present some surprising applications
including factorization of polynomials, simplification of expressions involving radicals,
and integration of rational functions.

Integer GCDs: The Basic and Extended Euclidean Algorithms

We are probably all familiar with Euclid's method for finding the greatest common
divisor of two non-negative integers. The procedure may be described recursively as
follows:

god(u,v) = {gcd(v,umodv) ifv=0,

u ifv=0.

The following example illustrates how the procedure works. It also shows how the
algorithm can be extended to determine integers s, ¢ such that the GCD is expressed as a
linear combination of the original inputs, gcd(u, v) = su + tv.

gcd(700, 440) = gcd(440, 260)

= gcd(260, 180) 260 = 700 — 440
= gcd(180, 80) 180 = 440 — 260 = —1 (700) + 2 (440)
= gcd(80, 20) 80 = 260 — 180 = 2 (700) — 3 (440)

= ged(20, 0) 20 = 180 — 2 (80) = —5 (700) + 8 (440)
= 20.

Note that the integers s, ¢ are not unique. For example,

gcd(30,18) = 6 -1 (30) + 2 (18) (found by extended Euclidean algorithm)
2(30)-3(18)
—4 (30) + 7 (18).

177



Polynomial GCDs

The basic and extended versions of Euclid's algorithm work for polynomials with integer
and rational coefficients, but some minor adjustments are needed. Here's a first cut:

ged(v,remainder(u,v) if degree(v) =0,
ged(u,v) = u if degree(v) =0 and v =0,
1 if degree(v) =0 and v = 0.

For example,

ged(x2 —1,2x2+4x+2) = ged(2x? +4x+2,2x-2)
ged(-2x-2,0)

= 2x-2.

What happened? We expected the result to be x+1 since

2-1=@x+1)Ex-1

22 +4x+2 = 2(x+1)2.
But we can also write

-1=12(-2x-2)(=x+1)

22 +4x+2 = «(2x-2) (x+1).

I

The difficulty is that we want our factorizations to be unique. How can we adjust
Euclid's algorithm? We define the content of a polynomial with integer coefficients,
content(u), to be the GCD of its coefficients, and the primitive part, pp(u) = u/content(u).
If we work only with the primitive parts of the polynomials at each iteration, dividing the
content out of the remainder, the GCD computed is unique up to unit factors (i.e., £1).

Euclid's algorithm for polynomial GCDs, like the method for integers, can be extended to
produce polynomials s, ¢ such that gcd(u, v) is expressed as su + tv. For example,

ged(x4 +4, x4+ 23 +x2-2x-2) = x2+2x +2
= (2/5x+3/5) (A +4)+(=2/5x+1/5) A+ 2x3 +x2 -2x-2).
Note that the quotient and remainder produced by dividing two polynomials with integer
coefficients are, in general, polynomials with rational (rather than integer) coefficients.

Remainder Sequences

Polynomial GCD calculation lies at the heart of any computer algebra system and plays a
prominent role in many applications besides simple arithmetic operations on rational
functions. As a result, the development of more efficient ways to calculate polynomial
GCDs can greatly improve the performance of a computer algebra system.

We will explore and compare several strategies for determining polynomial GCDs. In
the discussion below, we present the sequence of remainders produced by applying each
method to the polynomials

u=x8+x6_-3x4_3x3+8x2+2x—5 and v=73x0+ 5x4 - 4x2 - 9x + 21,
whose GCD is 1.

178



Rational remainder sequence. In this strategy, we apply Euclid's algorithm directly and
work with remainders that, in general, have rational coefficients.

—5/9x*+1/9x2~1/3 233150/19773 x — 102500/6591
—117/25 x2 - 9 x + 441/25 —1288744821/543589225

The disadvantages are the growth in the size of the rational coefficients, and the integer
GCD calculation required to reduce the fractions arising in the course of each division.

Euclidean remainder sequence. Here we keep the computation in the domain of the
integers by using “pseudo-division”, but the content is not removed from the remainders.

“15x4+3x2-9 1254542875143750 x — 1654608338437500
15795 x2 + 30375 x — 59535 12593338795500743100931141992187500

The advantage of this approach over the rational sequence is that no integer GCD
calculation is required. However, the coefficients grow to enormous (exponential) sizes.

Monic rational remainder sequence. In this approach, we work with rational coefficients
but normalize the remainders after each division to have a leading coefficient of one.
Therefore, we always divide monic polynomials.

~5/9 x4 +1/9x2-1/3 —46630/2197 x + 61500/2197
-39/25 x2 -3 x + 147/25 11014913/21743569

The coefficients are smaller than in the rational remainder sequence, but we still must
perform many integer GCD computations as each division is carried out.

Primitive remainder sequence. In this strategy, we work in the domain of the integers but
remove the content (i.e., GCD of the coefficients) from the remainders at each step.

5x4-x2+3 4663 x — 6150

13x2+25x-49 1

The growth of the coefficients is kept to the absolute minimum, but integer GCD
calculations are required to determine the contents.

Reduced remainder sequence. While the coefficients produced by this sequence are
larger than those in the primitive sequence, no integer GCD calculation is used at all.

~15x4+3x2-9 —18885150 x + 24907500

585 x2 + 1125 x — 2205 527933700
The method works best when the degree of the remainder drops by one at each iteration.

Subresultant remainder sequence. Like the reduced sequence, this strategy also
eliminates integer GCD calculation.

15x4-3x2+9 9326 x — 12300
65 x2 + 125 x - 245 260708
The size of the coefficients is guaranteed to grow about linearly.

179



Applications
The most obvious application of Euclid's algorithm in a computer algebra system is to
simplify rational functions. For example,

x6—1 x4+x2+1

4

X X +1
where the common factor of x2—1 has been cancelled out of both the numerator and
denominator. However, the Euclidean and extended Euclidean algorithms are used in

many other, perhaps surprising, contexts. We indicate a few of these applications here.

Polynomial factorization. The problem of factoring a polynomial is inherently more
difficult than that of identifying common factors of two polynomials. Nonetheless, the
Euclidean algorithm plays an important role in the implementation of factoring
algorithms.

First, Euclid's algorithm can be applied to detect repeated factors. A polynomial p has
repeated factors if and only if gcd(p, p) = 1. A proof of this fact embodies a procedure
for computing what is called the square-free decomposition. This algorithm involves
taking only derivatives and polynomial GCDs.

An example of a polynomial in square-free form is

plx) = (2 +1) (62 - D)* (3 +30)5.
Note that

(%) = 2x(x2—1)4(x3+3x)5 + 8x(x2+1)(x2—1)3(x3+3x)5 + 15(x2+1)2(x2—1)4(x3+3x)*
and ged(p, p)) = (x2-1)3 (x3 + 3x)* = 1. ged(p, p") identifies the repeated factors! Once
the square-free form has been found, each component can be factored separately to
produce the complete factorization,

px) = (2 +1) (x= 14 (x+1)4 x5 (x2 + 3)5.

There is yet another application of the Euclidean algorithm in factorization. Most
computer algebra systems factor a polynomial with integer coefficients by finding the
factorization modulo a prime number m, and then “lifting” this result to a factorization
over the integers. The extended Euclidean algorithm coupled with a technique called
Hensel lifting enables us to start with the factorization modulo a very small prime, m, to
produce the factorizations modulo m2, m3, ... until the factorization over the integers is
uncovered.

Simplification of expression with radicals. In elementary algebra, we are taught a simple
technique to “rationalize the denominator” of expressions involving radicals. For
example,

1/2V5—1) = 1/19 V5 + 1).

The technique we learned in school works well for small examples but is neither
sufficiently algorithmic nor sufficiently powerful to deal with transformations such as

180



