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Introduction

Mathematica® can be used to help students to visualize some of the important concepts in
an introductory course in partial differential equations. While teaching such a course, I
developed several demonstrations to illustrate the convergence of Fourier series,
vibrating strings and membranes, heat flow, and the hanging chain problem.

The Vibrating String and the Method of D’ Alembert

Consider a string with constant linear density that is stretched between two fixed points
x=0 and x=L on the x-axis. Let u=u(x,t) be the transverse displacement of the

string at x (0 <x <L) at time ¢. It can be shown that u = u(x,t) must satisfy the one-

dimensional wave equation with boundary and initial conditions:

g-?=c26-—i‘, where 0 <x < L and ¢ >0,
" 2

u(0,¢)=0and u(L,t)=0 for ¢t >0, and

u(x,0)= f(x) and g—l;(x,O)=g(x), forO<x<L.

Here ¢’ =< (7 is the tension in the string and p is the linear density of the string) and

the fand g are given functions that describe the initial position and initial velocity of the
string.

There are two ways we will solve this problem: (1) the standard separation of variables
and express the solution as a Fourier sine series and (2) d’Alembert’s solution that
expresses the solution in terms of traveling waves:

w+of

u(x,t)z%l:f* (x—ct)+f* (x+ct):|+—2—lc— & (s)ds,

where " and g~ are the odd periodic extensions of fand g.
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Take L=1, ¢=1,and g(x)=0 for 0<x<L=1. Itis easier to see the traveling waves

if the function f'is 0 for most of the unit interval. The function f will be the piecewise
linear function given by

0 if0<x<4orfi<x<l
lox—-4 if {<x<2
F(x)=9-8x+1 if E<x<?

03 7
4x—1 lfggxgﬁ
—12x+6if L<x<1

In Mathematica®, this piecewise-defined function can be entered as follows. The graph is
given in Figure 1.

flx1:=1If isxsi, 1, 0] « If isxs {,M:Ln 16x-4, -8x+l ,Min[dx-1, -12x+ 6]
4 2 4 8 2

Figure 1 — The graph of f, the initial position of the string.

We now calculate the coefficients of the Fourier sine series for f.
a,=2 J.lf(x)sinmtxdx
" 0
= 2( J‘j('(16x—4)sin nx dx + E(—8x+%)sinmtxdx

+ J_V(4x —1)sin nmxdx + E(—le +6)sin nzx dx)
After evaluating and simplifying, we obtain

-8
e i AT 1 Snr i 3T 144 Inm T T
a, = ——(4sin 2= — 6sin 3 + 3sin 2 — 4sin 222 + 3sin )

n 2 2

nn

The n™ partial sum of the Fourier sine series is Zak sinkzx. The graphs of the partial
k=1

sums of the Fourier sine series superimposed on the graph of fis given in Figure 2.
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Figure 2 — Graphs of partial sums of the Fourier sine series of f-

We see that taking 20 terms of the series gives a good visual approximation to the initial

position of the string. The solution of the problem will be u(x,t)=_ a, sinkzxcoskxt,
k=1

use the first 20 terms for the approximate solution to graph. An animation can be shown
using Mathematica® by using the command:

Do[Plot[Evaluate[%a[k] Sinfk 7 x] Cos[k 7 t], {x, 0, 1}, PlotRange » {-1, 1}]], {t, 0, 2, .05)]
k=1

Figure 3 shows the displacement at # =0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.
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Figure 3 — The displacement of the string.

[

By looking at the d’Alembert method we get a new insight into the behavior of the
vibration of the string. For our problem, the d’ Alembert method gives the solution in the

form u(x,t)= %[ f(x=-0+f (x+t):| , where f~ denotes the odd periodic extension of
/. The first term, [~ (x—t) , represents this extension of f moving to the right and the

second term, f~(x+¢), represents this extension of f'moving to the left. Figure 4 shows
the graph of u(x,t) =4[ " (x~#)+ " (x+1)] for 1=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.
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Figure 4 — The graph of u(x,t) = %[f (x-t)+f (x+r):| :
The Hanging Chain Problem

A chain with uniform density is hanging from a support. The x-axis is vertical and
x =0at the bottom of the chain, x=L at the top. The u-axis if horizontal and the
transverse movements of the chain are in the xu-plane. The differential equation is given

by
o*u o*u ou
u(L,t)=0, fort>0, and

u(x,0)= f (x) and %(x,0)=h(x), for 0<x <L,

where g is the gravitational acceleration and fand % are given functions. Take g=L =1,

01 if0<x<0.5 _ ,
h(x)=0, f(x)= ) . By the separation of variables method, we
0.02(1-x) if0.55x<1

see that the solution will be a Bessel series. The solution of the problem is given by the
series:

u(x,r)= i 0'04(2J2 (a./ ) -/, (2“_, \/g))
=l (ale (a_,. )

where J, J,, and J, are the Bessel functions of order 0, 1, and 2, respectively, and «a is

A (a_,\/;)cos(%tj,

the j™ positive zero of the Bessel function of order 0. Use Mathematica® to obtain these
Bessel coefficients and the solution (for # =0).
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<< NumericalMath BesselZercs”

a = BesselJZeros{0, 50] ;
.04

_ [(a[[j]]rrsselarl,a[[j111>2
ulx_, nJ = ) A[[3]] Besseld[0, a[[3])] V x]

J=1
Using Mathematica® as before, it appears that using 15 terms will give a good visual

approximation to the initial position of the chain.

(2Besseld(2, a[[3]]] - Besseld[2, a [[311V .5]), {3, 1, 50}

A=Table

The following Mathematica® commands will give an animation of the movement of the
hanging chain:

15 .04
ux , t] :=Z( : :
(a[3]] BesselJ[1, a[[3]]1])?

3=1

(2BesselJ[2, a[[j]1]] - Besseld[2, «[[J11V .5])

a[§3]] t])

BesselJ[0, a[[3]11 V x ] Cos[ R |

)

Do[ ParametricPlot[{u[x, t], x}, {x, 0, 1}, PlotRange - {{- .015, .015}, {0, 1}}, Ticks~
{{-.01, .013, {0, .5, 1}3}, PlotStyle- {Hue[1]}], {t, 0, 6, .1}]

Figure 5 shows the position of the chain at 1 =0.0, 0.5, 1.0, 1.5, 2.0, and 2.5.
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Figure 5 — The position of the chain.

In conclusion, the study of the partial differential equations of mathematical physics
offers a rich environment for the use of the Mathematica® to show the connection

between the mathematics and the physical model.
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