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INTRODUCTION

Teaching a mathematical modeling course or a multivariable variable calculus course
should introduce numerical search algorithms in order to solve optimization problems. It
is important to stress the numerical search procedure's concepts without requiring the
degree of sophistication required for a graduate course in nonlinear programming. Our
courses attempt to tie the nonlinear optimization concepts back to their fundamental
concepts taught in a multivariable calculus course. Many students have problems
fathoming the problem or understanding the concepts. This is due to spending all of their
valuable time figuring out how to perform the required iterative computations by pencil
and paper. It is in this area, iterative computations, that the computer can be most useful
and powerful.

The practicality of using the computer suits our modern methods of teaching
mathematics. With advanced spreadsheets like EXCEL and Computer Algebra Systems
(CAS) such as MAPLE, we have been moving towards a more /ean and lively
mathematics program. Our program for mathematics and computer science majors
consists of single variable calculus, multivariable calculus, linear algebra and elective
courses. The students become more conversant with MAPLE and spreadsheet packages,
such as EXCEL, as they take more courses. In our electives and more advanced courses,
we can readily take advantage of our student abilities with the computer and concentrate
on the mathematical procedures. Additionally, all our majors take a computer science
course, which gives many of them a programming experience in a basic language such as
"C++", FORTRAN, or Visual-BASIC.

Gradient Search Methods

Suppose we want to solve the following unconstrained nonlinear programming problem
(NLP):
Max z = f(x;, x3, x3,...,%) (1)
In calculus, if equation (1) is a concave function, then the optimal solution (if there is
one) will occur at a stationary point x* having the following property:
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In many problems, equation (2) is not an easy task to solve to find the stationary point.
Thus, the Method of Steepest Ascent (maximization problems) and the Method of
Steepest Descent (minimization problems) offers an alternative to finding an approximate
stationary point. We will continue to discuss the gradient method for the Steepest Ascent.
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Given a function, like the one in figure 1, assume that we want to find the maximum
point of the function. If we started at the bottom of the hill then we might proceed by
finding the gradient. The gradient is the vector of the partial derivatives that points "up
the hill”. We define the gradient vector as follows:
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If we were lucky, the gradient would point all the way to the top of the function but the
contours of functions do not always cooperate and rarely do. Thus, the gradient "points
up hill" but for how far? We need to find the distance along the gradient for which to
travel that maximizes the height of the function in that direction. From that new point, we
re-compute a new gradient vector to find a new direction that "points up hill." We
continue this method until we get to the top of the hill.

n

Figure 1. The Function, Z= f(x1,x2)= 2x,x, +2x, — x} —2x;

To find a maximum solution to given a multivariable unconstrained function, f{x)

INPUT: starting point Xo; tolerance, t
OUTPUT:  Approximate x*, and f{x*)
Step 1. Initialize the tolerance, ¢ >0.
Step 2. Set x=xy and define the gradient at that point.
Vitxo)
Step 3. Calculate the maximum of the new function fix/+t; Vf(x)),

where #; > 0, by finding the value of ¢

Step 4. Find the new x; point by substituting # into
X =X+ 1 V(x)

Step S. If the length (magnitude) of x, defined by
1

| Xl}= (x? +x2 +...+ x2)2, is less than the tolerance specified, then

continue.

112




Otherwise, go back to Step 3.
Step 6. Use x* as the approximate stationary point and compute, f{x*), the

estimated
maximum of the function.
STOP

Figure 2. Steepest Ascent Algorithm
Newton's Method

An alternative search method is the Newton-Raphson numerical method illustrated in two
variables. This numerical method appears to do a more efficient and faster job in
converging to the near optimal solution. It is an iterative root finding technique using the
partial derivatives of the function as the new system of equations. The algorithm uses
Cramer's Rule to find the solution of the system of equations.

Newton's Method for multivariable optimization searches is based on Newton's
single variable algorithm for finding the roots and Newton-Raphson Method for finding
roots of the first derivative, given a xo, iterate Xu+1 = X - f' (Xp)/f "(Xn) until | Xp4+1 - Xy is
less than some small tolerance. In several variables, we may use a vector Xg, or two
variables, (x4,y¢). The algorithm is expanded to include partial derivatives with respect to
each variable's dimension. In two variables (x,y), this would yield a system of equations
where F is the derivative of f{x,y) with respect to x and G is the derivative of f{x,y) with
respect to y. Thus, we need to find both F=0 and G=0 simultaneously.

N
This yields a matrix equation Zafjé‘x ; = B; , where
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The matrix equation can be solved by LU decomposition or in the case of a 2 x 2 by
Cramer’s Rule. The corrections are then added to the solution vector

Ll

X' = x;”d +0x;,i =1,..N

i

and iterated until it converges within a tolerance.

INPUT: x(0), y(0), N, Tolerance
OUTPUT: x(n), y(n)
Step 1. Forn=1 to N do
Step 2. Calculate the new estimate for x(n) and y(n) as follows:
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Z—F(x(n “Doyn-1) > g
X

%:(x(n =D, y(n-1)—>r
Q—q(x(n -, y(n-1)—>s
Ox

E(x(n -1, y(n-1) >¢
ox

-F(x(n-1,y(n-1)) > u
-Gx(n-1),y(n-1)>v
qt—rs > D
x(n=1)+ ut—-vr)/ D — x(n)
y(n-1)+(qv-su)/ D — y(n)

Step 3. If (x(n)-x(n-1))* + (y(n)-y(n-1))* )*? < tolerance,
Then Stop

Else , Go back to Step 2.
STOP

Figure 3. Pseudo-Code for Newton’s Method
Quasi-Newton Conjugate Directions

Another method is the Method of Davidon, Fletcher, and Powell (1963). The steps are
displayed in Figure 4.

Initialization Step: Let >0 be the termination scalar. Choose an initial point x and an
initial symmetric negative definite matrix D. Let y,=x,, let k=j=1 and go to main step.
Main Step.

Step 1. If || V/(y;) [< e stop; otherwise let dj = - D Vi(y;). Maximize f(y;+A;d) for the

optimal Aj, A; > 0. Let yj= y;+A4d. If j <n, go to step 2. If j=n, let y;=Xy+1=yn+1, replace k
by k+1, let j=1, and repeat step 1.
Step 2. Construct Dy,

p,p; D440,

T

D, =D+
7 pley qiDg,

IR

q; = Vf(yj+l)_vf(yj)
Replace j by j+1 and repeat step 1.

Figure 4. Method of Davidon-Fletcher-Powell

EXAMPLE SEARCH USING MAPLE
Maximize f(x1,X2) = 2x,x, + 2x, — x] —2x]
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Gradient Method
> F1=2%x1*x2+2*x2-x1"2-2%x2"2;

f=2xIx2+2x2—xI*-2x2*

>Up(100,.01,0,0,£);

Approximate Solution: ( .9922, .9961)
Maximum Functional Value:
Number gradient evaluations:
Number function evaluations:
Newton’s Method
>Ff2:=(x1,x%x2) ->2%*x1+2-4%x2;
2 =(xl,x2) > 2x] +2-4x2

>Steepest (£,£1,£2,100,.05,0,0) ; #example 1

Hessian: [ -2.000 2.000 1

[ 2.000 -4.000 ]
eigenvalues: -5.236 -.764
pos def: false
new x= 1.000 new ys= 1.000
final new x= 1.000 final new y= 1.000
final fvalue is 1.000

It converges to the point (1,1) after 2 iterations.

Method of Davidon-Fletcher-Powell
oldx1 :=1.000000000

oldx2 = 1.000000000

oldyl :=1.000000000

oldy2 = 1.000000000
1.000000000, 1.000000000

Converges to (1,1) in 1 iteration.

. =2 2
The Hessian matrix, 5

maximum.
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}, is negative definite so the point x* is a



