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Introduction. In this paper we describe several Maple lab activities appropriate for the
undergraduate discrete mathematics course. Recommendations from the Mathematical
Association of America (MAA) and the National Council of Teachers in Mathematics
(NCTM) suggest that students should gain experience with computer algebra systems
early in their undergraduate career. Specifically, Recommendation C.2 of the MAA’s
CUPM document states that mathematics departments should design major courses that
“...develop skill with a variety of technological tools: Departments should ensure that
majors have experiences with a variety of technological tools, such as computer algebra
systems, visualization software, statistical packages, and computer programming
languages”[1]. This sentiment is echoed by those responsible for the training of future
teachers. In The Mathematical Education of Teachers [2], it is recommended that future
mathematics teachers gain experience using a computer algebra system throughout their
undergraduate career. In light of these recommendations, we have written a series of lab
activities to be used in the freshman-level discrete mathematics course. The topics that
we focus on are: sequences, recursion, induction, sets, counting, and probability.

Sequences. We begin with an activity that invites students to investigate patterns. The
students are given Maple script that produces the first ten terms of a recursive sequence.
Next they run the Maple script and see if they can guess the closed formula for the given
sequence. The purpose is two-fold: the students practice working with both the closed
and recursive forms of a sequence as well as gain experience in reading and writing
loops.

Consider the sequence a, = a,; + 2n + 1 for n > 1 and with a; = 1. Using the following
Maple script, we can quickly see the first 10 terms of this sequence.
a:=array(1...10):
a[l]:=1:
print(1,a[1]);
for i from 2 to 10 do
afil:=afi-1]+(2*i+1):
print(i,a[i])
od:
What do you think is the closed form for this sequence? Check your conjecture by
modifying the above script so that the closed form replaces the recursive form.
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As a follow-up activity, we provide the closed form for a sequence and ask that the
students make a conjecture about the recursive form.

Sets. As a first introduction to sets and set operations, we use the following activity.

Given the universal set U = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}, use the following
Maple commands to generate subsets A, B, and C of size 3, 5, and 7, respectively.
with(combinat, randcomb);
U:={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};

A:=randcomb(U,3);

B:=randcomb(U,5);

C:=randcomb(U,7);

Use the randomly generated sets to determine the following: A W B, A N B,
AVCONBA,ANBNC),A-B,A"NnB,PA),AxB.

Next we’ll see how we can use Maple to check our answers. To find the union of sets A
and B, simply type A union B; The intersection command is A intersect B; To find the
set A — B, type A minus B; Maple does not have a built in “complement” command.
How can you use one of the above commands to find the complement? The power set of
a set A can be found by typing the following commands:

with(combinat, powerset);

powerset(A);

Finally, the Cartesian product of sets A and B is found using the following more complex
Maple command:

‘union’(op(map(y->map(x->[x,y],A),B)));

Counting. In the counting unit, the students discover the relationship between the
number of subsets and the number of permutations that can be formed from a set of n
distinct objects. The purpose is to let the students view sets, count subsets, determine the
equivalence classes so that they can discover the relationship between combinations and
permutations. There are also extension activities that allow the students to use Maple to
investigate topics such as recursive counting, the binomial theorem and Pascal’s triangle.

In the first lab we develop a formula that relates the number of subsets and the number of
permutations that can be formed from n distinct objects. Recall that the difference
between subsets and permutations is that in the first case we don’t care about the order of
the entries and in the second case we do. Helpful counting discrete math Maple
commands are bundled together. To access these commands, type: with(combinat);
The Maple command permute(n,r); generates the permutations of size r from a set of n
distinct elements. Recall that P(n, r) is used to represent the number of permutations of
size r from the set of n objects. Execute permute(n,r); for the following choices of n and
r.
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n 3 3 3 3
r 0 1 2 3

What is P(n,r) in each case?

Next, we’ll compute the number of subsets of size r from a set of n distinct elements.
Since now we do not care about the order of the entries, [1,2] and [2,1] are considered
“equivalent.” Count the number of subsets that arise in each of the above cases.

The Maple command choose(n,r); constructs the subsets of size r that can be formed
from n objects. The number of subsets of size r that can be formed from n objects is
denoted by C(n, r). Calculate C(3,r)forr=0,1, 2, 3.

n 3 3 3 3
r 0 1 2 3
P(n, r)
C(n, r)

Now let’s look at a slightly larger set, one that contains 4 distinct entries. Use the
permute(n,r) and the choose(n,r) commands to find all permutations (subsets) of size r.
Determine the number of permutations (subsets) for each choice of r = 0,1,2,3,4. Can
you use your results to come up with a formula that relates P(n, r) and C(n, r)? Explain
why this formula makes sense.

The next problem links the concepts of recursion and counting. The main question is:
“Why is P(n, r) = n- P(n — 1, r — 1)?” Consider another question, “How many
permutations of length r use entries from {1,2,...,n}?” We know the answer is P(n, r),
but let’s see another way to get this value. To answer this, we can use a two-step
decision process: (1) Choose a first entry from {1,2,...,n}; (2) Fill in the remaining r — 1
entries with a permutation of length r — 1 sing elements from the other n — 1 elements of
the set. Notice that this relationship does not help if r = 0, so it’s necessary to specify
that P(n, 0) = 1 for this recursive formula to make sense. The following Maple program
implements this idea:

P := proc(n,r)

option remember:

if (r=0) then RETURN(1)

else RETURN(n*P(n-1,r-1))

fi

end;
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Find P(6, 2) two ways: (1) using the above procedure and (2) using the Maple command
permute(6,2). How do the answers compare? Next modify the above procedure to
explore if the following is true:

P(n,k)=P(n-1,k)+P(n-1,k-1).

Probability. To help students develop intuition on thinking of probability as a “long-
term relative frequency” and expected value as a “long-term average”, we use Maple to
simulate random events so that students can use data to form conjectures. Often students
are presented with the topic of probability as an extension to counting problems and
therefore bypass the simulation step and go directly to calculating theoretical
probabilities. By omitting the simulation step, students often do not develop an intuitive
feel as to the probability of a particular random event. With this in mind, we have
developed a series of activities that invites the students to simulate random events using
Maple, devise empirical probability estimates, make conjectures about the theoretical
probability, and then use their knowledge of combinatorics to verify the conjecture. One
such activity follows:

Question. Given that there are 30 of us in the room, what is the probability that at least
two of us share the same birthday?

We will use the command randlist(n,k); which returns a random set of k& values from a
set of n objects. What are n and k in this situation? Simulate the birthday problem one
time. Was there at least one match?

To get an estimate of the likelihood that there will be at least one match we need to
perform many simulations. Each group will now simulate this experiment 20 times,
keeping track of whether there was at least one match each time. After everyone is done,
we’ll pool our data to determine the empirical probability that there’s at least one match.
To more easily determine whether or not there is a match, we’ll sort the data each time.
To perform the 20 simulations, type:

sort(randlist(365,k)); (where k is the number of students present)

Trial 1 2 3 4 5 6 7 8 9 10 |11 12 113
Match?

Trial 14 |15 |16 |17 |18 |19 |20

Match?

Based on the pooled data, what is the empirical probability that there’ll be at least one
match? Finally, find the theoretical probability that there will be at least one match.
(Hint: Find the probability of the complementary event, that is, find the probability that
given 30 people, there are no matches.) How close was your empirical estimate to the
true probability?
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After students have gained experience with using simulation to estimate theoretical
probabilities, we use simulation to get at the heart of expected value. If students are
‘solely presented with the definition of expected value for a discrete random variable, that
is, the sum of each outcome times its corresponding probability, they often do not
develop a clear picture as to the meaning of this number. If instead this concept is
presented as a “long term average” and the students are able to simulate the event for
many trials and compute an average, they develop a deeper understanding of expected
value. A sample activity is included below.

Question. Suppose five cards including an Ace are drawn from a standard deck. (If the
five cards do not include an Ace, they are replaced and the deck is reshuffled.) What is
the expected number of aces among the five cards?

We’ll approach this problem using simulated data first. Begin by using Maple to
randomly select 5 cards from a fair deck of 52, where one card is an ace. The following
script generates 20 5-card hands from a fair deck of 52.

with(combinat, randcomb);
carddeck:={Kc¢,Kh,Ks,Kd,Qc,Qh,Qs,Qd,Jc,Jh,Js,Jd,seq(i.c,
i=2..10),seq(i.h,i=2..10),seq(i.s,i=2..10), seq(i.d,i=2..10)};

aces:={Ac,Ah,As,Ad};

for i from 1 to 20 do
sort(randcomb(aces,1),randcomb(carddeck,4),lexorder);
end do;

What is the average number of aces based on your simulation data? Pool your data with
four friends. What is the average number of aces based on your groups’ data? Suppose
we were to simulate this experiment infinitely many times. What is your guess as to the
average number of aces in a 5-card hand? Now solve this problem using theoretical
probabilities.

Conclusion. For more Maple lab activities on sequences, recursion, induction, sets,
counting, and probability see
http://www.ship.edu/~deensl/DiscreteMath/ictcm03/index.html
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