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We present two activities using the software Derive to integrate geometric and group
theoretic notions into a linear algebra course. Linear algebra is a natural place to
introduce transformational geometry, symmetry, and the concept of a group via ma-
trix multiplication and matrix actions on vector spaces. The value of making these
connections of linear algebra to geometry and group theory is twofold. These ac-
tivities provide additional geometric content to the mathematics major and ease the
transition to more abstract courses in algebra. Moreover activities such as those pre-
sented in this paper can help students realize that mathematics is not a collection of
disjoint topics but rather a field with many interrelated topics which can often best
be understood through multiple mathematical viewpoints.

Geometry is often given a minimal emphasis, if any, in many undergraduate mathe-
matics programs. By placing some geometric content in linear algebra, students not
only have the opportunity to visit geometry in an undergraduate mathematics course
beyond calculus but also may deepen their understanding of the algebraic content.
Moreover, an algebraic viewpoint of transformational geometry and symmetry would
nicely supplement other approaches of these topics provided in modern geometry
courses, which is of particular importance to pre-service high school teachers.

The algebraic concept underlying these geometric concepts is that of a group. Linear
algebra is often taught as a computationally oriented course or as a course designed to
help students make the transition from computational courses to more abstract, theo-
retical courses in the mathematics major. In particular, linear algebra helps students
to prepare for a course in abstract algebra in which group theory is likely to be the
primary topic. Even though the primary algebraic object studied in linear algebra, a
vector space, is indeed a group, making the connection between the abstract concepts
of vector space and group can be difficult for students in a first course in abstract
algebra. Providing a brief, computationally concrete, geometric introduction to the
concept of a group using the familiar objects of matrices and vectors can help stu-
dents ease the transition into the abstract algebra class as well as solidify connections
between algebra and geometry.
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The Symmetry Group of a Regular Hexagon

This activity explores the symmetry group of a regular hexagon using matrices. The
activity introduces students to the notion of using a matrix to define a function on
(a subset of) R2. In particular, students use the following rotation and reflection
matrices:

cos 26  sin 26
sin2§ —cos20 |’

cosf —sind

Roty = [ sinf cosd

} Refangley = [

where Roty is the counterclockwise rotation of 8 about the origin, and Refangley is
the reflection in the line through the origin rotated through a counterclockwise angle
of  from the z--axis. Students create and plot a regular hexagon and then use basic
geometry (or vector geometry) to verify that their hexagons are indeed regular. After
determining the symmetries of the hexagon, the students are guided to painlessly
use Derive to create the group table for the symmetry group. The students then
use the table to verify that this set of symmetries is indeed a group. For a further
exercise, students can be guided to create a presentation for this dihedral group. We
now present the activity step by step and provide several comments about Derive
implementation.

1. We must first set the input mode in Derive to WORD. To do this, Select the De-
clare menu, the Input Settings sub-menu, and then click to select Word Mode
and OK. Now define the Derive functions for the rotation and reflection matri-
ces. To do this enter the following lines:

ROT(A) := [COS(6), —SIN(H); SIN(6), COS(9)]
Refangle() := [COS(26), SIN(26); SIN(26), —C0S(26)]

2. Plot a reqular hexagon inscribed in the unit circle. You can do this by starting
with one vertex at the point P = (1,0). Using the appropriate rotation matriz
(using ROT(A)), find the other five vertices of the hexagon. Once you have the
vertices of the hexagon, you may connect them with line segments to form the
hezagon.

To accomplish this, we can use the following lines of code.

P:=[1,0]
R1:= ROT (%)
VECTOR(R1°P‘,R1®+1)P* n 0, 6)

We then obtain the table of points
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Now go to a plot window and make sure the display options for points are set
to Large and Connected. The resulting figure will be the desired hexagon.

. FEither using results from your text and from basic geometry or by direct com-
putation, show that the hexagon that you have created is indeed reqular; that is,
the lengths of the sides of the hexagon are equal, and the angles of the hexagon
are equal.

Students can perform these computations by hand or with Derive using the
distance formula and the cosine formula for the dot product. Alternatively,
students can use the fact the rotation used to plot the hexagon is an isometry
of the hexagon and hence preserves distance and angles.

. Use ROT(#) and Refangle(f) to determine all of the symmetries (expressed as
matrices) of a reqular hexagon. How many are there?

. Now that you have developed a list of all of the symmetries of the regular
hexagon, the next task is to express all of them in terms of products and powers
of just TWO symmetries. State the two symmetries that you will use, and then
express each of the other symmetries in terms of these two.

The students should find matrices for the five rotations, six reflections, and the
identity transformation. An example of a pair of transformations which is gen-

L 77
erate all twelve transformations is given by r = ROT (5) and s = Refangle(0).

A presentation for this symmetry group is
(r,s|rs = sr®).
. Let D denote the set of these symmetries. Your next step is to create a multi-

plication table for these symmetries (expressed as matrices). Use the following
type of Derive command to create the table:

VECTOR([m *ay,m*as,...,m* an]amv [a1> az,. .-, an]),
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2. Note that each vertez on this cube lies on the sphere of radius /3 centered at
the origin. Moreover, the symmetry group of any sphere centered at the origin
is O(3), with orientation preserving subgroup SO(3). These are the groups of
orthogonal and special orthogonal 3 x 3 matrices, respectively. Thus, the orien-
tation preserving symmetry group of the cube can be represented as a subgroup

of SO(3).

3. Find and plot the three 4-fold azes of symmetry of the cube, and find a matrix
representation of a 1/4—turn rotation about each axis in SO(3).

4. Find and the plot four 3-fold axes of symmetry, and find a matriz representation
of a 1/3—turn rotation about each azis is SO(3).

This step is more complicated than the previous step and requires several im-
portant techniques from linear algebra. To do this, first find an orthonormal
basis B = {n,qi,qs} for R, where n is a unit vector in the direction of the axis
of rotation and q; and q, form an orthonormal basis of a plane preserved by
the rotation. In particular, find (and plot) an equilateral triangle on the cube
that is preserved by a 1/3—turn rotation about the given axis. Let vy and vy be
two vertices of this triangle, and verify that set B = {n, vy, vy} is basis for R3.
Now apply the Gramm-Schmitt orthonormalization process to B to obtain an
orthonormal basis B’ = {n, q;,q2}. Interchange q, and qq, if necessary, so that
the determinant of the matrix with columns n, q;, and g, has a determinant of 1.

The matrix of the 1/3—turn rotation with respect to the basis B’ is

1 0 0 1 0 0
Mp=1{0 cosf —sinf [=]0 3} A
0 sin] cos} 0 % 1

and the change of basis matrix from B’ to the standard basis is P = [nq; qz].
The desired matrix of the 1/3—turn is then M = PMg Pt

5. There are siz axes of order two joining midpoints of opposite sides of the cube.
Find and plot these axes. Then determine a matrix representation for each of
these half-turn rotations.

6. Construct the multiplication table for this collection of transformations and ver-
ify that it is indeed a group.

7. Show that this group is isomorphic to the symmetric group Sy. That is, cre-
ate a one-to-one correspondence between these groups that preserves the group
structure.
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where a1, as, . .., a, are the matrices representing the symmetries of the reqular
hexagon. The ijth entry in your table will be the matriz product a;ay. You
should note that each product in this table is indeed an element of the set D.
We can conclude that D is closed under matriz multiplication. Note that even
though we are using matrices to represent these symmetries, each symmetry is
really a function of the hexagon. Thus, the operation of matrix multiplication
corresponds to the composition of the symmetries.

7. Use the fact that matriz multiplication is associative to show that matrixz multi-
plication in D s associative.

8. Find an element I of D such that AI = A = IA for each A in D. The
element I is called the identity element of D wunder the operation of matrix
multiplication.

9. Show that each element of D has an inverse in D. That is, show that for each
matriz A in D, there is a matric A~ in D such that AA™' = A=A = 1. This
step and the proceeding three steps prove that D is a group under the operation
of matrix multiplication.

10. Matriz multiplication is not commutative in D. Give an example of two elements
of D that do not commute. Illustrate this graphically.

The best way to study this table is to print it out and tape the pieces of
paper together. It is also recommended to label the rows and columns of this
table with the appropriate matrices. From the table, the students should then

be able to observe closure, identify the matrix [ (1) ? } as the identity, and

identify multiplicative inverses. Students can also verify that this group is not
commutative from the table.

The Symmetry Group of a Cube

This activity is similar in spirit to the symmetry group of the hexagon activity, yet
there are some features that make this activity significantly more difficult. Under-
standing this problem geometrically requires the student to be able to visualize the
three-dimensional geometric behavior. A computer algebra system can easy help the
visualization process. The step which requires students to find matrices representing
1/3—rotations about the axes of three-fold symmetry is best approached by finding
each matrix with respect to a convenient orthonormal basis for R? using the Gramm-
Schmitt process and then by applying the change of basis theorem to express each
matrix in terms of the standard basis for R3.

1. Plot the cube in R® with vertices at (£1,+1,£1), (F1,£1,+1), (+1,F1,+1),
and (£1, £1,7F1).
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