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Introduction

Graphing capabilities of spreadsheets have been used in the preparation of mathematics
teachers mostly for constructing functional relationships between two variables with
respect to a set of coordinate axes [1-3]. Although the use of a spreadsheet as a generator
of geometric figures from numerical tables has been known in the context of advanced
mathematics, computer, and engineering education for about a decade [4], it has been less
generally recognized in the context of mathematics teacher education. Yet, such a
utilization of the software in the preparation of teachers seems to be didactically sound
for, among other things, it puts the ancient tradition of the geometrization of mathematical
structures in the context of contemporary educational discourse.

This paper shows how the graphing capabilities of spreadsheets enable interactive
geometric constructions from the results of numerical modeling of several fundamental
concepts in number theory presented in the form of homogeneous Diophantine equations
of the second order. To this end, the paper focuses on the systematic construction of
integral solutions to classic equations of that type in the form of numerical tables and
interactive geometrization of such solutions in the form of triangles. One didactical
significance of such use of a spreadsheet is to introduce several number theory concepts
as problem solving tools of computational environments designed to be interactively

mapped into the geometric domain.

Integral solutions to second degree algebraic equations

The problem of finding all integral solutions to a second-degree polynomial equation in
three unknowns with integral coefficients belongs to a classic branch of the elementary
theory of numbers with a long and fascinating history. In geometric terms, two special
cases of such an equation represent relationships between integral sides x, y, and z of a
right triangle and scalene triangle with a 60° angle respectively

x*+y’=z? (1)

x%-xy+y?=z* 2
A set of three integers satisfying equation (1) is called a Pythagorean triple and (3, 4, 5) is
the simplest example of such a primitive P-triple. (The triple (x, y, z) is said to be
primitive if the greatest common divisor of x, y, and z is 1). Cuoco [5] suggested to call a



set of three integers satisfying equation (2) an Eisenstein triple; one can check that (5, 7,
8) is a primitive E-triple.

Also, one can consider the following generalization of the above equations
x2-2xycosy+y’=z? 3)

A triple of integers (X, y, z) satisfying equation (3) will be referred to below as a y-triple.

Thus a P-triple is a 90°-triple and an E-triple is a 60°-triple. The following questions, both

technological and pedagogical, arise at this point:

e How can primitive y-triples, including the above mentioned special cases, and their
associated triangles (i.e., geometrizations of the triples) be generated within a
spreadsheet?

e What conceptual insights about different triples and relationships among them can one
gain in a numeric environment of a spreadsheet?

e What mathematical concepts different from triples can be introduced through the
process of construction of the computational environments in question?

e How do such environments support one’s ability to experiment with mathematical
context, generate new knowledge about triples, and make mathematical connections?

e How does a spreadsheet-enabled experimentation with and geometrization of number
theory concepts support one’s understanding of the concepts?

This paper is aimed to address the above questions. It is motivated by work done with
pre-service teachers of mathematics with special emphasis on the use of a spreadsheet as
tool kit [6,7]. The metaphor of a tool kit in the context of technology-enabled
mathematics instruction means an array of representational formats that mediate one’s
mathematical thinking in a technology-rich environment. A tool kit approach to the
teaching and learning of mathematics in a spreadsheet environment is based on the
assumption that the variety of qualitatively different representational formats (notation
systems) provided by the environment differently affects the acquisition of new concepts
by learners. A spreadsheet-based tool kit includes graphic, geometric, iconic, numeric,
and other types of representational formats. Some of these representations are used in

this paper to illustrate the approach.

Generating 90°-triples through the Euclidean algorithm

The general formulas for 90°-triples have been well known since the time of Euclid:

If (x, y, z) is a primitive Pythagorean triple, then one of x and y is even, and the

other is odd. If y is even, then

x=m2-n2, y=2mn, z=m2+n2 (4)

where m and n are relatively prime positive integers of opposite parity, m>n.
Formulas (4) can be utilized in a computational environment for generating non-trivial
solutions to equation (1). This environment should be capable of coordinating two related



arithmetical properties of the generators m and n. This coordination requires the use of
the Euclidean algorithm.

An educative value of this computational environment is not only in the systematic
presentation of all primitive 90°-triples related to a given generator m, but also in the fact
that its structure invites new observations and stimulates new inquiries. For example, for
a given m, how many » exist? In other words, how many 90°triples can be generated
within the environment? Through modeling 90°-triples on a spreadsheet, the Euler phi-
function @(m) defined as the number of positive integers not greater than and relatively
prime to m can be introduced in applied context. In terms of this function, one can come
up with the following computationally motivated conjecture: For a given generator m,
there are @(m) generators n, when m is even, and @(m)/2 generators n, when m is odd.

Generating y-triples within a spreadsheet
Consider the following formulas [8] which provide all integral solutions to equation (3):
x=m’+2mn; y=2mn+2(1-cosy)n?; z=m*+2(1-cosy)(mn+n?) (5)
where m and n are relatively prime integers. In particular,
for y=90°, (x,y, z)=(m*+2mn, 2mn+2n?, m*+2mn+2n?);
for y=60°, (X, y, zZ)=(m*+2mn, 2mn+n?, m>+mn+n?); and
for y=120°, (x, y, z)=(m*+2mn, 2mn+3n?%, m*+3mn+3n?).

Apparently, other integer values of the angular parameter ¥ would not produce formulas
for rational, let alone integer triples. In order to generate integer y-triples for rational
values of cosy (different from 1/2, -1/2 and 0) one has to substitute in (5) p/q for cosy and
use the formulas

x=q(m’+2mn), y=q[2mn+2(1-p/q)n’], z=q[m*+2(1-p/q)(mn-+n’)] (6)
for the construction of integer y-triples, where p and q are relatively prime integers.

Formulas (6) do not guarantee the triples to be primitive though, even if m and n as well
as p and g are relatively prime respectively. Indeed, the case of m=6, n=1, p=2, and q=5
yields the triple (240, 66, 222) which is not primitive. In order to generate primitive Y-
triples only, once again, one can incorporate the Euclidean algorithm into the spreadsheet.
This algorithm divides each element of a y-triple constructed via formulas (6) by their

greatest common divisor.

Figure 1 shows such a spreadsheet that generates 120°-triples. Formulas (6) are
incorporated in the range F6:H6 and replicated down this range. The Euclidean algorithm
is used by the spreadsheet three times. First, like in the case of 90°-triples, the algorithm
enables generators m and n be relatively prime with the weakened condition regarding



their different parity. Two other applications (along with the first hidden to the right of
column H), enable 120°triples to be relatively prime.
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Figure 1. Generation of 120°triples. Figure 2. Geometrization of a 120°—triple.

Geometrization of y-triples

In general, one can represent y-triples geometrically using a spreadsheet. To this
end, the numeric environment that generates y-triples according to formulas (6) can be
connected to numeric domain using the idea described in the previous section. More
specifically, one can see that if y=120° infinitely many 120°-angled triangles whose side
lengths are relatively prime integers can be generated. However, for each generator m
there exists finite number of such triangles; one such a triangle has relatively prime integer
sides 13, 35, 43, satisfying the law of cosine with the largest side being opposite to 120°
angle. By setting the table of four basic points (0, 0), (x, 0), (ycosy, ysiny), (0, 0) and
plotting them on the XY-Scatter selection from the Chartwizard menu, one can construct
the edges of the triangle corresponding to a y-triple (Figure 2).

In addition, two new columns with the second series of points (0, 0), (p, 0), (p, p), (0, p),
where p=max(X, y, z), has to be added to the table in order to produce an accurate
portrayal of the angle y. The 120°-triple (65, 88, 133) and its geometric representation in
terms of an obtuse triangle are shown in Figures 1 and 2 respectively. The additional data
that generates a square is hidden from view in Figure 2.

The occurrence of sister y-triples
Using a spreadsheet as a generator of y-triples one may come across the following ‘sister’
60°-triples with two common elements, (8, 3, 7) and (8, 5, 7), that both satisfy equation
(3). Several questions arise at this point: (i) How can the existence of sister 60°-triples, or
more generally y-triples, be interpreted in algebraic terms? (i) How can the spreadsheet-
enabled geometrization of y-triples provide an interpretation of this phenomenon?

(iii) For what values of y do sister y-triples occur?

One may note that both triples (x, y, z) and (x, x-y, z) satisfy equation (3) and this
observation gives a general rule for generating sister 60°-triples. Does this rule generate all



sister 60°-triples? The simultaneous geometrization of the triples (8, 3, 7) and (8, 5, 7)
shown in Figure 3 gives a geometric interpretation of this phenomenon. Apparently, this
interpretation holds true for values of y different from 60°, yet it suggests that no sister y-

triples exist for y>90°.

Figure 3. Spreadsheet-enabled geometrization of sister triples.
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