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Abstract. In this article a selection of examples is used to illustrate how the numerical and graphical
capabilities of graphing calculators can be used to enhance the teaching and learning of limits. The variety
of data types available in these tools facilitates the use of multiple numerical approaches. This in tun
allows for a more in depth treatment of this topic, and for introducing some of these ideas at a lower level.

The limit of a function is one of the fundamental concepts in the study of calculus. It has
also been traditionally one of the hardest topics for students to grasp conceptually. The
use of technology, in particulai of modern graphing calculators, facilitates, without a
major time investment, using the numerical and graphical approaches to complement the
- algebraic approach enhancing the teaching and learning of this concept. Some basic
capabﬂmes of these machines make this possible. First of all, the speed and precision of
these inexpensive machines facilitate the use of estimation as a viable problem solving
strategy. Also, as we have began to see in the new curricula [Core-Plus Mathematics
Project, 1998], the ability to immediately visualize the graph of functions is changing the
way we approach the teaching of many calculus topics. Moreover, the variety of data
types that modern graphing calculators provide, allows for the use of multiple approaches .
to introduce numerical ideas both in precalculus and in calculus. Thus, it is possible to
study key calculus concepts in the way they were developed and are better understood,
that is, as limits of approximations. Finally, we will see that graphing calculators have

the potential for increasing the scope and the degree of difficulty of the problems that can

be posed.

Our goal in this article is to review some basic problems to illustrate how the numerical
and graphical capabilities of graphing calculators can be used to enhance the teaching of
limits. The problems presented were selected to represent different approaches,

accessible at various levels, to ideas related to the concept of limits.
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The syntax used in the commands and the screens provided corresponds to the Texas
Instruments TI-83. The screens included, sometimes in excess, will remove any doubts
in reproducing the solutions provided. Our initial work was influenced by two of the

pioneer works on the integration of technology [Demana & Waits, 1993; Dick & Patton,
1994].

Exploring the local and global behavior of a function
In these first examples we illustrate the graphical approach together with the numerical
approach that will be presented using tables, sequences and lists, and recursion.

Example.  Use numerical and graphical evidence to explore the behavior of the

following functions at the given values, I)f (x)=51nx near x=0; II)
x
x*,x<1
h(x)=<3-2x,1<x<2, near x=2; III) g(x):-——l\/._i_—izil—i— nearx=-1; and IV) the
x/4+12<x |Vx+2 -1 |

behavior of g(x) =1+ ]/ x)* as x grows unbounded. Compare your answer with e.

Solution. The first numerical approach shows that the speed of modern graphing
calculators makes the table feature a simple and yet powerful tool for analysis, which is

perfectly accessible in precalculus [ ].

DLet y,= SIN% and select Ask for the independent variable in Table Setup. Then, giving
x .

to x values arbitrarily close to zero, first from the right and then from the left, we see as

illustrated in figure 1.a, that lim SN¥ _1. The graph (figure 1.b) can be traced, after

x>0 X

zooming in if necessary, to confirm visually the result and the independence of the
existence of the limit from the value of the function at x = 0. Notice that the symmetry

of the graph with respect to the y-axis can be easily read from the table, as well as from

the graph.
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I1. Figure 1c illustrates the syntax needed for the piecewise defined function A(x). The

table of figure 1.d shows that the left and right limits converge to different values, a fact

that can be visualized and confirmed by tracing on the graph in figure 1.e using dot mode.
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Figure l.e Figure 1.f Figure 1.g Figure 1.h

I1I. In this example a second numerical approach is shown. This approach is more
soﬁhisticated since it requires the use of sequences and lists. However, the variety and
| importance of the applications accessible in calculus by using the sequence data structure
justify the initial investment of time. We have used this approach successfully with first-
‘year calculus students afier they have gained enough familiarity with the table. As seen
in figure 1.f, we create two sequences that converge to p from either side using p+10™
for increasingly large values of n. Then, the function g(x)is evaluated at each sequence.
Labeling the lists obtained allows using the list editor (figure 1.g) to see the sequences. -
The results confirm that as x gets closer to—1ffom either side, the function approaches 2.
Finally, instead of generating the sequence of values of g(x)after the sequence of x-
values is obtained, we can use recursion to generate the sequence of points. Figures 1.i
and 1.j show that the ability to concatenate commands using colon, allows us to

recursively evaluate g(x) after each new x-value is generated.

I>N 1 1->N 1 A Ys Yo YO=(1+1/37"%
1000 | 27169 | 8014 L

uﬁam- {H-¥Y3(-1+ hlﬁ@-}ﬂ- {H>¥3(-1- ig. §§§§ :}:‘3

1.1 2.9488888482 | {.1 1.9486832987 i T

8155 Pbavs o6, | {181 1. &‘

£ 88172, BB4998 | {.0B1 1.99545998_ |

[ | = 2=557 WuEB1 Y=2716BE36

Figure 1.i Figure 1.j Figure 1.k Figure 1.1
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IV. As seen in figure 1.k, giving increasingly larger values to x the function seems to

converge to an irrational value. To confirm that the function approaches e as x grows

unbounded, it suffices to observe the corresponding values of y, = e—(1+1/x)* approach 0.

YB=(1+17%7"% RV Yz WIRDOW :
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Figure 1.m Figure 1.n Figure 2.a Figure 2.b

Tracing over the graph (figure 1.1) reinforces visually the process. A word of caution, as
seen in figure 1.m, if the domain of the function exceeds the precision of the calculator,
and students’ curiosity guaranties that this will happen, the classical truncation error

emerges produéing the graph depicted in figure 1.m.
Figure 1.n shows a classical precalculus application used to illustrate how the compound

interest of $1 deposited at a rate of 5% approaches the continuous interest e®°, when the

number of compounding periods used in a year increases.

Introducing ¢~ 35 problems with an application
Example. We want to cut a disk of area 50.27 in’and radius 4 in. Would it be

reasonable to use a blade 0.025 inches thick if we wish to obtain an error in the area of at
most 0.75 in*?

Solution. Lets start by defining the functions y, = zx*, y, =51.02, and y, = 49.52, and
then centering the screen about (4,50.27) using a y-radius that allows for the three

previous functions to be displayed, and guessing an appropﬁate small initial radius for the
x. As shown in figure 2.a, an initial x-radius of 0.1, and a y-radius of approximately 0.5
were used. The y-radius was big enough to make room for calculations to be displayed at
the bottom of the screen. To ensure the tolerance sought, the x-range may have to be

modified, until the graph of y, enters the screen from the left and exits it from the right,
while remaining between y, and y, as shown in figure 2.d. As illustrated in figure 2.c,
the interval /4, BJ, defined by the x-coordinates of the intersection points of y, with

¥, and ,, respectively, provides the maximum x-range. Finally, the largest possible
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radius for the x-interval is min{|4— A4|,| B—4|} =0.03, which shows that the proposed

thickness of the blade is acceptable.
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Figure 2.c Figure2.d Figure 3.a Figure 3.b
~ Other examples

The behavior of the function f(x)=x’sin(1/x)in the vicinity of x = 0 can be observed
visually and numerically in figures 3.a & 3.b, making the sandwich theorem to come

alive. |
Zooming in the graph of a function such as g(x)=sin(z/x) near x = 0 or evaluating its

values at {1/2, 12/5, 1/3, 2/9, 1/5, 2/13,...}(figure 3.c& 3.d) helps to understand its
~ apparently chaotic behavior.
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Figure 3.c Figure 3.d - Figure 4.a Figure 4.b -

Finely, to explore the continuity of y=35" at‘ x=+/2, we use the sequences
L ={1.4,1.41,1 414,.. Yand L, = {1.5,1.42,1.415,...} that approach~/2 from the left and the
rfght respectively. Hence, evaluating 5'at L, and L, we obtain two sequences that
approach 5%2 and whose difference Li=L L, ——>’O. Thus the graph of y =5" seems to

be continuous at \/5 .
Bibliograph

Core-Plus Mathematics Project. (1998). Contemporary Mathematics in-Context a
Unifying Approach: Course I and Course I11. Chicago, Illinois: Everyday Learning

Publications. .
Demana F., & Waits, B. (1993). Precalculus. Reading, Massachusetts: Addison-Wesley

Publishing Company.
Dick T., & Patton C. (1994). Calculus of a single variable. Boston, Massachusetts: PWS Publishing

Company.

255




