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1. Five Unifying Elements of a CAS

The impact of computer algebra systems (CAS) on the mathematics curriculum is
enormous. The mathematics instructors are gradually changing their teaching
techniques because of these technologies (see [1], [2], and [9] ).

Why are CAS such powerful tools to do mathematics? One can identify five essential
elements of CAS making them a unique tool in mathematics education. They are the
use of a CAS as a tool for (a) computation (b) visualization (c) experimentation (d)
pattern-recognition and (e) conjecture-forming. These are in fact the five essential
elements unifying all CAS. Such five-fold usage of a CAS totally empowers

mathematics educators and the students at all levels.

Fig. 1.1 The Five Unifying Elements of a CAS

The above five unifying elements are however, not at all independent from each other.
In fact they are very much interrelated. The full effectiveness of a CAS comes into
light when all the elements (a)-(e) are used in harmony with each other.

This paper discusses the unifying elements (a) computation and (b) visualization.
Specific examples will be given to describe each role.
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We have used Mathematica as our choice of the CAS in the following discussion (see
[8] and [10]). However, most of these ideas can also be implemented by other CAS

such as Maple or Derive.

2. The CAS as a Computational Tool

The CAS are good computational tools because of their vast array of built-in functions.
Most of the CAS can simplify, factor, and expand algebraic expressions, solve
equations, perform differentiation and integration, solve differential equations, perform
matrix calculations, etc. Given below are some of the calculations using Mathematica.

Example 2.1 Solving Equations
Find the exact and approximate solutions of x* —2x—-4=0.

Input: Solve[x"2-2x-4==0,x]  (* Finds the exact solutions*)
NSolve[x"2-2x-4 == 0, x] (* Finds the numerical solutions*)

Output: {{x->1-+/5}, {x->1+/5}}
{{x->-1.23607},{x— > 3.23607} } n

Example 2.2 Evaluating Functions via the Functional Notation

. x}—4x? +5
Evaluate the function f(x) =———— at x=2, x=—-4, and x=-1/2.
2x+3
Input: fIx_]:=(x"3-4x"2+5)/(2x+3) (*Defines the function f in Mathematica*)
{f[2],]-4].f[-1/2]} (*Evaluates fat x =2, -4, and -1/2 *)
Output: The output is {-3/7, 123/5, 31/16}. u

Example 2.3 Difference Quotients, their Limits, and Derivatives

[ -1

Given f(x) = 2x? —3x+4, calculate the difference quotient

h
x =3 and a suitable number of small A-values. Calculate lim f (3+h}z_f €) and
h—>0
fim (”hh) =S Also find £'(3) and f'(x) directly.
h—>0
Input:
flx ]=2x"2-3x+4 (*Defines the function f*)
glx ] =[x+ h] - f[x])/h (*Defines the difference quotient of f*)

Table[g[3], {h, 0.01, 1.01, 1/20}]  (*Makes a table of values for g for a fixed x = 3*)
Limit[g[3], h -> 0]
Limit[g[x], h -> 0]
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f'[3] (*Directly calculates the derivative of f at x=3*)
f'[x] (*Directly calculates the derivative of f at x*)

Output:
{9.02, 9.12, 9.22, 9.32, 9.42, 9.52, 9.62, 9.72, 9.82, 9.92, 10.02, 10.12, 10.22, 10.32,

10.42, 10.52, 10.62, 10.72, 10.82, 10.92, 11.02}
9

-3+4x

9

-3+4x [ ]

Are computations useful by themselves? Perhaps for the engineer or for the researcher
getting the final answer could be quite important. However, for the student or for the
mathematics educator, this could be the least important aspect of learning mathematics.
This is where the visualizations will play a big role. To reap good benefits of a CAS,
one must at least combine the computational aspect with the visualization aspect.

3. The CAS as a Visualization Tool

Almost all the CAS are fully capable of producing two and three-dimensional graphing.
These graphical capabilities make CAS excellent visualization tools (see [3], [4], [5],
[6], [7], and [8]). In this section, we will add a visualization aspect to the examples
discussed in the previous section.

The following example helps visualize the roots of an equation as the x-intercepts of the
corresponding graph. Also see Example 2.1.

Example 3.1 Roots, x-intercepts, and Discriminants
Discuss the solutions(roots) of the equation x? —2x+k = 0 for k-values —4,1 and 2.

Input: Solve[x*2 - 2x +k==0,x] /. {{k > 4}, {k-> 1}, {k ->2}}
Output: {{{x->1-Sqrt[5]}, {x > 1+ Squt[5]}}, {{x > 1}, {x > 1}}, {{x->1-1}, {x > 1 +1}}}

Depending on the k-value, the equation has two distinct real roots, one real root, or two
distinct non-real roots. To visualize what is happening, one can graph the
corresponding functions. Their x-intercepts will reveal the nature of the roots of the
equation for different k-values. In particular, observe that the x-coordinates of the x-
intercepts of the graph, if they exist, are nothing but the real roots of the corresponding
equation (see Fig. 3.1 below).

Input: Plot[Evaluate[x2 - 2x + k /. {{k -> -4}, {k > 1}, {k->2}}], {x, -5, 8},PlotRange -> {-5, 20},
PlotStyle -> {{RGBColor[1, 0, 0], Thickness[1/150]},
{RGBColor|0, 1, 0], Thickness[1/150]},{RGBColor[0, 0, 1], Thickness[1/150]}}]
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Output:

Fig. 3.1. Roots of x> —2x + k==0 for k=-4,1 and 2

The above is a static visualization. However, a dynamic visualization of the same
situation is more effective. The following program creates an animation of the graphs

of y=x*-2x+k for integer k-values ranging from —4 through 4. The top of each

graph displays the current k-value, the discriminant, and the roots. Observe that when
the discriminant is negative, the graph stays clear of the x-axis, thus not having any real
roots. This is a good way to motivate the concept of the discriminant of a quadratic

equation.

Program 3.1

filx 1 =x2-2x+k

{x1, x2} = x/. NSolve[f[x] == 0, x];

Do[Plot[fx], {x, -5, 8}, PlotRange -> {-5, 20}, PlotStyle -> {Thickness[1/150], RGBColor[1, 0, 0]},

PlotLabel -> StyleForm[StringForm["k="" D="" " k, 4 - 4k, PaddedForm[{x1, x2}, {1, 1}]1],
FontSize -> 14, FontColor -> RGBColor[0, 0, 1], FontWeight -> "Bold"],

Epilog -> {PointSize[1/80], RGBColor[0, 0.820325, 0], {Point[{x1, 0}], Point[{x2, 0}]}}], {k, -4, 4}]

Output: A few frames are given below:

Fig. 3.2. An Animation of the Graph of y = x> —2x + k for Different k-values

Example 3.2 Secant Lines, Difference Quotients, Tangent Lines, and Derivatives

We are now in a position to bring the calculations in Example 2.3 into life, using a
dynamic visualization! The following program creates an animation of the secant lines

to the graph of f(x)=2x* —3x+4 through the points (3, /(3)) and (3+h, f(3+h))
for changing A-values. As the increment 4 tends to zero, the secant lines will gradually
approach the tangent line at x = 3.
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Program 3.2

Clear[t]

x0=3; b=5; flx ] :=2x"2-3x+4; n=200;

tli_] = x0 + i*(b - x0)/n

StylePrint["Secants Lines and Tangent Lines", "Text", FontSize -> 36, FontFamily -> "Times",
FontColor -> RGBColor[0, 0.4, 0], TextAlignment -> Center, FontWeight -> "Bold", Background ->
RGBColor[0.5, 1, 0.8]]

Do[Plot[{f[x], f[x0] + f[x0](x - x0)}, {x, 0, 6}, PlotRange ->{{0, 6}, {0, 50}}, PlotStyle ->
{{Thickness[1/140], RGBColor[1, 0, 0]},{ Thickness[1/140], RGBColor[0.6, 0.6, 0.1]}},

Background -> RGBColor[0.9, 0.9, 0.7], PlotLabel -> StyleForm[StringForm["f(x0)="", m=""",
PaddedForm[N[f[x0]], {3, 1}], PaddedForm[N[(f[x0] - fIt[i]])/(x0 - t[i])], {3, 1}]], FontSize -> 48,
FontWeight -> "Bold", FontColor -> RGBColor[0.95314, 0.500008, 0.0429694]],

Epilog -> {{RGBColor[0, 0.4, 0.3], PointSize[1/60], Point[{x0, f[x0]}]}, {RGBColor[0, 0.4, 0.3],
PointSize[1/60], Point[{t[i], f]t[i]]}]1},{RGBColor[0, 0, 1], Thickness[1/200],

Line[{{x0 + (t[i] - x0)(-4), f[x0] + (flt[il] - fTx0])(-4)},{x0 + (t[i] - x0)(4), fx0] + (fTt[i]] - flx0D(4)}}13,
{Thickness[1/110], Line[{{x0, 0}, {t[i], 0}}]1}, {RGBColor[0, 0, 1], Line[{{t[i], fIt[il]}, {xO0, f[x0]}}1},
{Dashing[{0.04, 0.02}], RGBColor[0, 0, 1], Line[{{t[i], 0}, {t[i], fIt[i]]}}]},{Dashing[{0.04, 0.02}],
RGBColor[0, 0, 1], Line[{{x0, 0}, {x0, f[x0]}}]},{Dashing[{0.04, 0.02}], RGBColor[0, 0, 1],
Line[{{t[i], fTx0]}, {x0, f[x0]}}1}}1, {i, 1, 199, 198/40}]

Output: A few frames of the animation are given below:

Fig. 3.3. An Animation of the Secant Lines Approaching the Tangent Line

When the animation is run in reverse, one can observe the secant lines gradually
approaching the tangent line at x =3. The top of each frame displays the derivative of
the function at x =3, and the slope m of a secant line. For full effectiveness, this
animation must be presented in conjunction with the calculations in Example 2.3. u
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4. Conclusion

This paper described the role of two unifying elements, (a) computation and (b)
visualization, of a CAS. The computational aspect (a), used by itself, will only bring
limited results for the mathematics educators. If a student or an instructor is using a
CAS only to perform routine calculations, then he or she is not getting the full benefit
of such a powerful tool. In order to properly see the hidden meanings behind the
computations, one must also resort to visualization techniques. = Because of their
advanced graphics and programming capabilities, modern CAS provide an ideal
environment to pass back and forth between computations and visualizations. Mainly
two types of visualizations are possible, static visualization and dynamic visualization,
the latter being more effective. Even though not discussed in this paper, (a)
computation, and (b) visualization lead into three more aspects of a CAS, namely (c)
experimentation, (d) pattern-recognition, and (e) conjecture-forming. The full strength
of a CAS only comes into surface, when all the unifying elements (a)-(e) are used in
harmony with each other.
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