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Introduction

This paper presents three computer software products useful in the introduction of some
classical upper division mathematics classes such as geometry and for some related topics

in abstract algebra.

Studying desigﬂs that are based on regular polygons and their constructions provides a
rich source for introducing ideas in geometry and abstract algebra. This paper
demonstrates a variety of ways that the Geometer’s Sketchpad software helps the

- instruction of these subjects.

Perhaps the most suitable model for the exploration of hyperbolic geometry in the
classroom is the Poincaré Disk. The two-dimensional model maps the hyperbolic plane
of all space onto a unit-radius size disk. Here, hyperbolic lines are represented by arcs of
circles perpendicular to the bounding circle of the unit disk. Non-Euclid is a Java
software simulation that offers straightedge and compass constructions in both the
Poincaré Disk and the Upper Half-Plane models. As an instructional tool, Non-Euclid
offers instructors an opportunity to bridge the gap between developmental understanding
of non-Euclidean geometry, which is based on visual explanations, and the importance of

understanding theorems and concepts.

Another topic in which computers can be used is the study of rigid transformations in the
plane, and the symmetry groups of one- and two-dimensional patterns. For this purpose,
Tessellation Exploration will be presented. The Tessellation Exploration software utility
is able to tessellate with 33 different types of tiles. This utility provides an environment
that helps students analyze isometries used in a tiling.

Construction of Regular Polygons

Karl Fredric Gauss, a young student of nineteen, was the first to prove the impossibility
of the construction of a class of regular polygons. He proved that the construction of a
regular polygon having an odd number of sides is possible when, and only when, that
number is either a Fermat number, a prime of the form 2%+ 1, where k=2",n=0,1,2,...,
or is made up by multiplying together different Fermat primes [1]. Such a construction is
not possible for regular polygons such as a heptagon or nonagon. Gauss first showed that
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a regular 17-gon is constructible, and then after a short period, solved the general
problem.

The Cyclotomic Extensions in abstract algebra is a topic that ties together results from
modern algebra and ancient geometric construction problems. In this topic, Gauss's
claim can be proved in a fairly short argument using Galois theory [1]. Then what is left
for students is to see some of these constructions to make sense of what they have

learned.

Certain constructions are more straightforward. The construction of the hexagon, and
subsequently equilateral triangle and dodecahedron, is a natural property of the circle; the
radius of each circle divides the circle into six parts. Based on the construction of
perpendicular lines, students can figure out how to construct a square and then
subsequently an octagon and a 16-gon. However, dividing a circle into five congruent

parts does not seem natural.

Figure 1(a) shows the construction of a regular pentagon using the Golden Cut, G, of
radius AB, where AB/AG = AG/GB. First, C, the midpoint of the radius AB is found. At B,
BD is drawn perpendicular to AB and equal in length to CB. The points A and D are
joined and point E is found on AD such that DE = BD. From point A, an arc of radius AE
is drawn to cut AB at G. The length AG divides the circle into 10 equal segments. '

An outline of the proof can be stated as follows:

From AB’ + BD? = AD? AB = 2ED, BD =ED, and AG = AE we conclude that AG =
(«/.5- -1)EDand GB = (3 - V5 ) ED. Therefore, we have AB/AG = AG/GB (Figure 1.a).

To show the length AG divides the circle into 10 equal arcs we only need to show that
ZBAK = m/5, where BK= AG (Figure 1.b). For this we consider two triangles 4ABK
(which is an isosceles triangle) and 4KBG. They are similar because AB/BK = BK/GB
and ZKBG = ZKBA. This shows KG = BK = AG and therefore «£BAK = <AKG. But
from the similarity of the two triangles 44BK and AKBG we know «BAK = <BKG.

Therefore LAKB =2 ~BAK and since ©<AKB =.ABK we conclude that 54BAK=m.0

(b)

Figure 1: The Construction of Regular Pentagon.

267



The Geometer’s Sketchpad Animated Construction

The Geometer’s Sketchpad is a visual geometry software program, which is distributed
by Key Curriculum Press. This software program is based on the rules of constructions
using compass and straightedge. After becoming familiar with the Geometer’s
Sketchpad, it is not difficult to prepare a “script” file for construction of a pentagon and,
consequently, a decagon. This animated file can be presented to the class, illustrating a
step-by-step process of the construction. .

To do this, we need to pull down the File menu and select “New Sketch” and “New
Script”. Press the record button, which is located on the script window. In the sketch
window, select two random points A and B and construct the line segment AB. Then
construct the midpoint C of AB. The next step is to select AB and point B and construct
the line perpendicular to AB at B. Sketchpad will label this line k. Now use B as the
center of a circle that passes through C. Select and label the point of intersection of this
circle with line k, which will be D. Now construct the line segment AD. The next step is
to make a circle, which is centered at D that passes through B. This circle will meet AD
at E. Now make a circle with center at A that passes through E. This circle will intersect
the line segment AB at F. Relabel F and call it G by double clicking the left bottom of the
mouse on F and changing it to G. G is the Golden Cut of AB. Now we use AG to divide
the circle into 10 congruent parts and construct a regular pentagon. The last step is to
hide most objects keeping only the line segment AB, point G, and the pentagon. Now stop
the recording. We can test the pentagon maker script by opening a new sketch and
selecting two random points of A and B. Clicking on the play button, the computer shows

the construction step by step.

Examples from Art and Architecture

With the same procedure explained in the above section we are able to expand our set of
animated constructions to include examples from art and architecture. '

Figure 2 is a Persian ceramic design,
which includes carpet-like details made
from solidly, colored, small, curved tiles.
The division of space of the layout
creates geometrical pieces. The
construction of the design in this figure
is based on the pentagon (and thus
decagon as well). Figure 3 provides the
geometrical constructions of pieces in
Figure 2. Utilizing the Geometer’s
Sketchpad, we are able to present each
piece as an animated construction, which
also includes information about their

measurements.

Figure2: A entagon-ase' rami.
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Figure 3: Details of the parts for the underlying pattern of the ceramic in Figure2.

Non-Euclidean Geometry and Computers

Compared to the Klein model and pseudosphere presentation of hyperbolic space, the
Poincaré Disk seems more appropriate for the introduction of hyperbolic geometry in a
geometry class. This model is conformal, which means it preserves angles. Consider
that you are in the center of the disk and want to walk away toward the boundary. From
your local perspective, each step you take is the same size. But from the point of view of
an observer outside of this disk your steps get progressively smaller by the ratio of
(1-r%)/2, where r is your distance from the origin in this model.

Non-Euclid is a Java software simulation that performs geometrical constructions in both
the Poincaré Disk and the Upper Half-Plane models. This utility can be downloaded
from http://cs.unm.edu/~joel/NonEuclid/.

Figure 4: (a) Concentric circles, (b) Line segments that share an endpoint and two triangles, (c)
TriangleA ABC and its interior angle bisectors (Three angle bisectors are also concurrent in the
hyperbolic geometry) and the reflection of this triangle under the line GH.
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Tessellation Exploration and Wallpaper Patterns

Tessellation Exploration is a software utility which is distributed by Tom Snyder
" Productions and designed to create tilings using basic geometric figures such as triangles
“and quadrilaterals. The software is able to tessellate with 33 different types of tiles. The
software has been developed based on Heech’s classification [2] of the 28 types of
asymmetric tiles that can fill the plane in an isohedral manner without using reflections.
The other five tiles in this software utilize reflections. An isohedral tiling is defined as
selecting two congruent figures such that there always exists a symmetry motion that will
move one of the figures exactly onto the other.

Polya illustrated the 17 wallpaper patterns in his article “Uber die Analogie der
Kristallsymmetrie in der Ebene” published in Zeitschrift fiir Kristallographie in 1924 [3].
The following figures are renditions of two of Polya’s illustrations that the author of this
article has created with the help of Tessellation Exploration. Figure 5(a) has been
~ identified as D, in Polya’s paper. The basic shape to construct this pattern in
Tessellation Exploration is a triangle. The isometries employed are a reflection and a
quarter rotation. The mathematical notation for this pattern is P4m. It belongs to the
square lattice of wallpaper patterns and its highest order of rotation is 4. It can be
generated by 1/8 of its square unit. The other figure is the rendition of D’; Polya’s
_illustration, which haso been created, based on a triangle and two isometries of a reflection
and a rotation of 120 . The mathematical notation for this pattern is P3Im. It is in the
hexagonal lattice with the highest order of rotation 3. It can be generated by 1/6 of a

hexagon unit.

Figure 5: (a) A P4m Wallpaper Pattern, and (b) a P31m Wallpaper Pattern.
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