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Teaching a course in integral calculus requires graphic images that depict areas under
curves. Since these areas may be estimated by summing areas of appropriately chosen
rectangles or trapezoids, images of these figures together with the curve are needed as
well. Using MAPLE® the instructor can produce such images quickly and easily. Simple
MAPLE® procedures can be written to produce specialized images for graphxca]]y
illustrating concepts related to the trapezoidal rule and Simpson’s rule.

The MAPLE® kemnel is supplemented by many software packages that offer the user a
collection of procedures responding to similar needs. One such package is the student
package whose procedures offer ways to facilitate teaching mathematics. Among
procedures in the student package are leftbox, middlebox, and rightbox, which help
illustrate the method used to approximate areas under a curve. Procedures lefisum,
middlesum, and rightsum compute the associated sum of areas. Consider that the definite
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integral given by _[ f(x) dx can be introduced as
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where Arepresents a partition of [a,b] and ¢; is any point in the ith subinterval.
Frequently c; is taken as the left hand or right hand endpoint of the ith subinterval where

the subintervals are of equal length. For a given function, the MAPLE® lefibox,
middlebox, and rightbox procedures (commands) create effective and colorful depictions
of n rectangles the sum of whose areas approximates the definite integral over [a,b]. The
MAPLE® user simply provides a value for n, the number of desired subintervals, along
with the function to be integrated. For example, consider the area bounded by the graph
of f(x)=8-0.5x%, the x-axis, the line x =1, and the line x =3. With f(x)=8-0.5x"
previously defined and ten subintervals required, the following MAPLE® command

@

rightbox (f (x) ,x=1..3,10, 'shading'=grey,color=blue) ;
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results in the image shown in Figure 1.
Similar graphics are obtained using the
commands middlebox and leftbox, for which
¢; in (1) is taken to be the midpoint and the

left hand endpoint of any subinterval,
respectively.

As a follow-up, the student package routine
rightsum (middlesum, leftsum) can be used to
compute the associated sum of areas. This is
especially useful after evaluating a few sums
on the chalkboard, a process that can consume
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Figure 1. Command rightbox is used to much class time. The rightsum command

depict recm‘ﬁg]es whose sum approximates shown in (3) was used to produce the result
t

area under the curve. (4). Note that the MAPLE® command rightsum

nnp]ements the sum exactly as it would appear on paper since, for a=1, b=3, and

n=10, x; =a +( a)i =1+ —5— fori=1,...,10 indicates the right-hand endpoint of the

n
_ith subinterval.

DesiredArea:=rightsum(f(x),x=1..3,10)=
value (rightsum(f (x) ,x=1..3,10)); 3)

10

.2 :
Desireddrea :=-;— > [8 -05 ( 1 +—;—) ] = 11.26000000 “)

i=1

More examples of this type can be explored quickly using MAPLE®. It is easy to compute
iteratively the sum of areas for increasing numbers of subintervals to demonstrate the
convergence of the sum to the area represented by the definite integral. Also, the inert
commands Sum and Limit may be used to display symbolically the limit in (1) as well as
compute that limit as the number of subintervals increases without bound. :

3
To further investigate the method of approximating _[8-—0.5x2 dx, the following

commands shown in (5) determine lower and upper approximations for the relevant area
under the graph of f(x)=8-0.5x" for increasing numbers of equally spaced
subintervals. An abbreviated result is shown in (6).

> for n from 10 by 20 to 520 do

> areaLo:=value (rightsum(f (x) ,x=1..3,n)): 5
> areaHi:=value(leftsum(f(x),x=1..3,n)): ( )
> printf("\n For n = %3d: %8.4f < DesiredArea <
%8.4f",n,aréealo,areaHi) :

>od:
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DesiredArea < 12.0600

For n = 10: 11.2600 <

For n = 30: 11.5326 < DesiredArea < 11.7993

For n = 50: 11.5864 < DesiredArea < 11.7464 . (6)
For n = 470: 11.6582 < DesiredArea < 11.6752

For n = 490: 11.6585 < DesiredArea < 11.6748

For n = 510: 11.6588 < DesiredArea < 11.6745

MAPLE® offers inert commands that are identified by capitalizing the first character of a
command. Their purpose is to express a computation without actually computmg a

numerical result. For example, the command

Int (£ (x),x=1..3); Q)
. 3 .

results in J 8-0.5x"dx (8)
, |

whereas int (£(x),x=1..3); ©)

results in 11.6666667 . Using the commands /imit and sum together with their inert
forms, the MAPLE® statement

Limit (Sum('(8.0-0.5%(1.0+i*2.0/n)"2)*(2/n)"','i'=1..n),n=infinity)= (10)
limit (sum(' (8-0.5*%(1.0+i*2/n)"2)*(2/n)','i'=1..n),n=infinity);

.12 (8.0 - 0.5-(1.0 L 20
produces lim Z '

n— o i=1

2
J ) (11)
=11.66666667

n

In this case, ¢; in (1) is taken to be the right-hand endpoint of any subinterval.
Classroom demonstrations typically include chalkboard evaluations of limits like the one
shown above. These demonstrations can be supplemented with various limit evaluations
corresponding to other choices for ¢;, and hence other Riemann sums.

Numerical integration becomes necessary when the integrand has no antiderivative or the
function to be integrated is represented by a collection of data pairs taken by experiment.
Graphs that help illustrate the midpoint, trapezoidal, and Simpson’s rules are not easily
rendered on the chalkboard. While the MAPLE® command middlebox can be used to
illustrate the midpoint rule, no intrinsic command is offered to help students visualize the
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approximations implemented when using the trapezoidal rule or Simpson’s rule. A
procedure was written for each so that these rules could be better illustrated. Called

myTrap, the first of these was invoked using

myTrap(f,0.5,1.5,4); (12)

where f represents the previously defined function f(x)=-x*+2x’-2x%+2x+0.5,
parameters 0.5 and 1.5 bound the illustration on the x-axis, and the parameter 4 indicates
that four equally-space intervals are
~ to be used. The result is shown in
Figure 2. The MAPLE® student
package includes the . procedure
trapezoid that uses the trapezoidal
rule to approximate values for
definite integrals. For example, the
trapezoid command returns the value
1.294921875 as the approximate
value for the shaded area in Figure 2
when 4 equally-space intervals are

0 o5 ) 5 ] used. This deviates frox;l the true

31
value of the area, Sap> by an

Figure 2. Procedure myTrap illustrates trapezoidal
approximations for s(x) = o o varvos amount approximately equal to
0.025911458.

A second procedure called mySimp was written to allow the instructor to graphically
illustrate how Simpson’s rule approximates the definite integral corresponding to an area
under a curve. Figure 3 shows the image produced by a call to mySimp with

mySimp (£,0,2,3,12,0); (13)

In this case, f(x)=1.5+cos4.lx, the

definite integral is approximated from x =0
to x=2 using 3*2=6 equally spaced
subintervals (3 pairs of adjacent
subintervals). The value 12 allows the user
to control the shading process while the last
parameter 0 provides user control over the
lower horizontal edge of the graphing
window. Note the 3 parabolas — one for
each adjacent pair of subintervals. Any :
parabola intersects the graph of f(x) at the ! ..

three points whose x-coordinates are the lefi- Cx

hand endpoint, the midpoint, and the right-  Figure 3. Procedure mySimp illustrates Simpson’s
hand endpoint of its pair of adjacent Rule approximations for f(x) =1.5+cos4.1x
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subintervals. For this case, when 6 equally spaced intervals are used, the intrinsic
MAPLE® command simpson returns the value 3.235121790 as the approximate value for
the shaded area in Figure 3. The following MAPLE® command

Int (f(x),x=0..2)=int (£(x),x=0..2); (14)

‘ 2
returns f cos(4.1x) + 1.5 dx = 3.229446477 | (15)
0

indicating an error due to the approx1mat10n using Simpson’s Rule (with n=6) of
around 0.005675313.

As a final example of the versatility of MAPLE® consider the partial MAPLE® worksheet
shown in Figure 4. It contains an Excel®-like spreadsheet with theoretical bounds on

errors due to approximating the definite integral of the function f(x)= e™ from x=0 to
x =1. The midpoint rule, the trapezoidal rule, and Simpson’s rule were used with 4
subintervals. The last row of data provides the actual errors seen using the 3 methods in
this case with f(x)= e™ . Note that MAPLE® provides for the use of equation editing

within text contained in the worksheet (above the spreadsheet). Also notice that, similar
to Excel®, a cell may contain a formula that references other cells in the same spreadsheet.
The highlighted cell (E2) references cell A2, utilizes a fourth derivative, and references
other previously defined values from the worksheet. This can be seen in the text box just
below the main tool bar.

" abs{evalf(@@(D.4)(N(0)))*(b-a)"5/(180*~A2"4)

K(b-a)
_1(80—‘)— where Ifm(x)l<K foralla <x <

lErrors-,,qm l <

Trapezoidal Rule
0.0104166667
© 0.0038400350

Ssmpsons Rule |
0.0002604167
0.0000312468

;’ Midpoint Rule
: Error Bound 00052083333
' ErrorDucToAppr; 0.0019229990

Figure 4. Part of a worksheet showing a MAPLE® spreadsheet that contains actual errors and theoretical
. . . . . . . 1 - 2
error bounds related to using the midpoint, trapezoidal, and Simpson’s rules to approximate [e * ax.
0
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