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Abstract
Newton’s work on dynamics is described in his three books of The Principia. This is a

work of major importance since it develops the fundamental ideas with which we may
describe the mathematics of motion. Newton’s arguments are based on geometric ideas
and, in particular, for the motion of the planets around the Sun he uses arcane
geometrical properties of the ellipse to show that the planets do indeed move in elliptical
orbits. Although he didn’t develop the calculus for the motion of the planets, the
underlying ideas are there. He uses the concept of a limit, in a manner which we would
recognise as a derivative, to obtain planetary orbits. We shall follow Newton’s
approach and show how to implement his method as a set of recurrence relations on a
spreadsheet. Our spreadsheet implementation will be used to calculate the parameters of

the orbit of the Earth.

Motion of the planets around the Sun

A very good account of Newton’s work, in particular his work on planetary motion, is
given by Thrower (1990). In this section we use the spreadsheet, following in Newton’s
footsteps (Cajori 1934, Stein 1996) to develop the elliptic orbits of the planets around
the Sun. Newton’s approach was developed using arcane geometric properties of the
ellipse, which were well-known in Newton’s time. We shall follow the main thrust of
his argument, introducing our own notation to facilitate the development of suitable

recurrence relations.

Suppose that the motion is described as a set of discrete equal time-steps, Az, and
consider the motion in the time interval ¢, <t <t¢, + At =¢,,,. The notation is described
in Figure 1.

The Sun, S, is fixed at the origin and the planet, P, has position P,, (x,, y,) at time ¢, .
At this time the planet has a velocity v, along the tangent to the trajectory so that, in the
absence of any other force, Newton’s first law implies that the planet would move to the
point P/, with PP =v At.

However, the effect of the Sun is to produce a gravitational force which obeys the
inverse square law. Following Newton, we shall assume that this effect is the same as
that of a suitable impulse applied to the planet at P’,. This impulse will give the planet
a velocity u, which we assume to be in a direction parallel to the vector I—),—S: so that the
planet would move to the point P,,, with P/ \P,, =u, At.

The reason for choosing the direction parallel to ITS" is to ensure that the motion obeys
Keppler’s second law as follows:

71



ASP, ,P=ASP.P,,
= ASP,P.

r+l

S
Figure 1 Notation for motion of planet around the Sun.

Hence the radius vector sweeps out equal areas in equal times.
We can see that at P,,; the planet has a total velocity, V,, given by

V?=v}+u’-2v.u, cosa,

Figure 2 Total velocity at P,,,.

The force, F,, at P, is given by

F = 2
where G is the universal gravitational constant and M and m are the masses of the Sun
and the planet respectively. The force is directed towards the Sun in the direction 175" .

b

The impulse is given by
J, =F.At,

) J, .
and, since u, =—, it follows that
m

u =GMAt.

r 2
r

We are now in the position to set up the recurrence relations:
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er =x’+y’ 1)

u, = (;Azl At )

@, = arctan % 3)
2 2 p2

Q, = arccos R} +(v,01)" ~ R, 4)

2R, v, At
x,, =x, +At(v, cos(8, +ea,)—u, cos 6?,)
Vo =y, +At(v, sin(@, +a,)—u,siné,)

2 12 _ .2 2
Vo, =V'=v +u -2v,u, cosa,

)
(6)
(7

We notice that equations (1), (3) and (4) are purely geometric relations. Equation (7) is
a kinematic relation, easily derived from Figure 2. Equation (2) describes the velocity

of the planet due to the impulse at time ¢,. Equations (5) and (6) describe the motion of
the planet in the time interval (tr,tm). We note here that the recurrence relations (5)
and (6) are those that are obtained by using Euler’s method to approximate the
differential equations x=V_,y =V .

These recurrence relations are solved subject to suitable initial conditions and we shall
consider the motion of the Earth in its orbit around the Sun with the following data
(Allen 1976):

v, =3.029x10*ms™, R, =1.471x10"" m (perihelion values),

M =1.989x10"kg, m=5.974x10*kg, G =6.673x10™" Nm’kg 2.

In Figure 3 we show the spreadsheet with a time-step of one day (86400s) and we
develop the solution in the first ten time-steps. In Figure 4 we show the trajectory in the
first quadrant which takes approximately 90 days.

Al B ] C D E F G H | J
1 _[Motion of Earth around Sun
2
3 At G Ro M m Vo
4 86400 6.673E-11 1.471E+11 1.989E+30 5.974E+24 30290
5
6 r |[tr x_r _r R_r theta_r alpha_r v_r u_r AA_r
7 0 0 1.471E+11 0 1.471E+11 0| 1.570796327 30290| 529.9614809
8 1 86400 1.471E+11| 2617056000] 1.47123E+11| 0.017789123| 1.553007204 30290 529.7937908 1.92484E+20
9 2| 172800 1.47054E+11| 5233297760| 1.47147E+11| 0.035572524| 1.552715457| 30285.20879| 529.6206566 1.92484E+20
10| 3| 259200| 1.46963E+11| 7847912091 1.47172E+11] 0.053350021| 1.552426711| 30280.26385| 529.4421438 1.92484E+20
11 4| 345600 1.46826E+11| 10460087137 1.47198E+11| 0.071121436] 1.552141056| 30275.16689| 529.2583199 1.92484E+20
12| 5| 432000| 1.46643E+11| 13069012669| 1.47224E+11 0.08888659| 1.551858582| 30269.91969| 529.0692539 1.92484E+20
13| 6| 518400| 1.46414E+11| 15673880365 1.47251E+11 0.10664531| 1.551579376| 30264.52407| 528.8750171 1.92484E+20
14| 7| 604800 1.46141E+11| 18273884098| 1.47279E+11| 0.124397423| 1.551303526| 30258.98189| 528.6756822 1.92484E+20
15| 8| 691200 1.45822E+11| 20868220214| 1.47307E+11| 0.142142759| 1.551031117 3025329507] 528.4713238 1.92484E+20
16| 9| 777600] 1.45457E+11] 23456087814| 1.47336E+11| 0.15988115] 1.550762234| 30247.46557| 528.2620181 1.92484E+20
17] 10| 864000 1.45048E+11| 26036689034 1.47366E+11 ] 0.177612432|  1.55049696| 30241 .4954] 528.0478@ 1.92484E+20

Figure 3 Spreadsheet implementation of recurrence relations (1)...(7).
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Figure 4 Trajectory of Earth in its motion around the Sun.
We see, qualitatively, that the trajectory closely resembles an ellipse.

The angular momentum is given by

do
L=mR—.
dt
Now, since the area swept out and the angular momentum are related by
dA L
dr 2m’
Kepler’s second law is equivalent to the conservation of angular momentum.
K L M N
3L Eo
4| 2662E+40 2.650E+33
5
6 |L_r AL_r E AE_r
7 | 2.66181E+40
8 | 2.66237E+40(0.013987 | -2.6497E+33|0
9 | 2.66239E+40|0.014502 | -2.6489E+33|0.032187

10| 2.66240E+40/0.015012 | -2.6489E+33|0.032706
11| 2.66241E+40(0.015516 | -2.6488E+33|0.03322

12| 2.66243E+40/0.016015 | -2.6488E+33|0.033728
13| 2.66244E+40/0.016506 | -2.6488E+33|0.034229
14| 2.66245E+40(0.016992 | -2.6488E+33|0.034723
15| 2.66247E+40/0.017471 | -2.6488E+33|0.03521

16| 2.66248E+40(0.017944 | -2.6488E+33|0.035691
17 | 2.66249E+40(0.018409 | -2.6488E+33|0.036165

Figure 5 Angular momentum and energy at each time-step.
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Also, the system moves in such a fashion that energy is conserved, i.e.

E= lmV2 —% = constant.

2
The angular momentum, L,, and the energy, E,, together with the percentage changes,

at each time-step are shown in Figure 5.
We see that the errors in L, and E, are small; in fact the average errors are of the order

0.02% and 0.04% respectively which are of the same order as the errors in the data.

Conclusions

Newton developed the proof that planets orbit the Sun in ellipses using arcane
geometrical properties of the ellipse. He based the proof on his law of gravitation and
on Kepler’s second law. Newton’s approach allows us to develop a set of recurrence
relations which may be implemented on a spreadsheet. Solving these equations with
data for the Earth produces a trajectory which qualitatively has the appearance of an
ellipse. When we use the data to estimate the parameters such as the major and minor
axes, the semi-latus rectum and the eccentricity we find that the errors in the predicted
are within the accuracy off the given data.
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