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The methods we learned in algebra to factor polynomials rely on a certain amount of pattern
matching, guesswork, and just plain luck. They work well for quadratics, a few special cubics,
and perhaps an occasional polynomial of higher degree where one or two roots are obvious. One
of the more impressive capabilities of computer algebra systems is their ability to factor
polynomials reliably and efficiently. How do these systems solve this problem?

We begin by addressing the question of what it means to factor a polynomial. Let us examine the
response of a typical computer algebra system, Maple, to a few simple factorization problems.

factor(x2-9) = (x-3)(x +3) €)) factor (32 -7) = x2-7 (4)
factor (4x2+ 16x + 16) = 4 (x +2)2 ¥)) factor (x2+9) = x2+9 (5)
factor (x2-9/16) = 1/16 (4x—3) (4x+3) (3)

The first two answers are not surprising. By analogy with (1), we probably expected (x—3/4)
(x+3/4) to be returned for (3). The polynomials in (4) and (5) are returned unfactored. Why not
answer (x—\7) (x+\7) and (x-37) (x+3i), respectively?

When factoring polynomials we need to do so with respect to some algebraic structure, and
computer algebra systems choose to factor over the integers unless directed otherwise. Factoring
polynomials with rational coefficients is equivalent to factoring over the integers. To factor

px)=a,/b,x"+a, 1/b,.; x*1 +...+ay/b; x +ay/bg,
we can remove 1/lcm(b,,b,,._1,...,b1,b¢) from p(x), leaving a polynomial with integer coefficients.
So factoring x2-9/16 is equivalent to factoring 1/16 (16x2-9), explaining Maple's answer to (3).

1. Schubert-Kronecker Method

Finding the linear factors of a polynomial p(x) = c,x" + c¢,_1x"-1 +...+c1x + ¢( is equivalent to
determining its rational roots. Observe that if x = a/b (reduced to lowest terms) is a root of p(x)
then a divides ¢ and b divides c,,.

Example I-1. Suppose p(x) = 6x*-x3+4x2—x—2. The divisors of ¢y = -2 are +1, +2 and those of
¢, = 6 are =1, £2, +3, +6, and so the candidate rational roots are 2, =1, £2/3, 1/2, 1/3, £1/6.
Substituting each into p(x), we find p(2/3) = 0, p(-1/2) = 0, and p(x) # 0 for the other 10 choices.
So, (x=2/3) (x+1/2) = 1/6 (3x-2) (2x+1) evenly divides p(x), and p(x) = 1/6 (3x-2) (2x+1) (6x2+6)
= (3x=2) (2x+1) (x2+1). [] '
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Isaac Newton, in his Arithmetica Universalis (1707), described a method for finding the linear
and quadratic factors of a univariate polynomial. In 1793, the astronomer Friedrich von Schubert
showed how to extend this technique to find factors of any degree. Schubert's method was
rediscovered by Leopold Kronecker some 90 years later. Their procedure is fairly straight-
forward to understand and implement, and we now describe it.

The key ideas behind the Schubert-Kronecker method are:
1) Ifp can be factored, then one factor has degree m < | degree(p)/2].
2) If g(x) is a factor of p(x), then g(a) evenly divides p(a) for any a.
3) A unique polynomial of degree d (or less) can be interpolated through d+1 points.
Here's how Schubert-Kronecker factorization works.
Step 1. Choose m+1 points: ag, ay,..., a,,. (0, x1, £2, ... will work.)
Step 2. Evaluate p(x) at each of these points, x = a;.
Step 3. Find the set f; of distinct (+ and — factors) of p(a;).
Step 4. To find the factors of p(x) of degree d, choose combinations of d+1 points (a;,b;),
where b; € f;, and interpolate g(x). If g(x) divides p(x), then g(x) is a factor of p(x).

Example 1-2. Suppose we want to factor p(x) = x4+4. m = |degree(p)/2] = 2, so let's choose the
m+1 points: ay =0, a; = 1, a, =-1. Evaluating p at these points and factoring the values, we have

Play) =p(0)=4 Jo= {1, £2, =4}
plap)=p(1)=5 f1=1{£1, 5}
pla)=p(-1)=5 fr=1{£1, 5}

p has no linear factors. To find its quadratic factors, there are 6-4-4 = 96 triples to test. One triple
that doesn't succeed is by = 1, b; = -1, b, = 5. Interpolating g(x) = ax2+bx+c, we obtain

(0,1): 1 =a02+b0+c
(1,-1): -l =al2+bl+c
(-1,5): 5=a(-12+b(-1)+c

Solving, we find that a = 1, b = -3, ¢ = 1, and g(x) = x2-3x+1 does not divide p(x). A triple that
works is by =2, by =5, b, = 1. Here we have

(0,2): 2 =a02+b0+c

(1,5): 5=al12+bl+c

(-1,1): 1 =a(-1)2+b(-)+c
and a=1, b=2, ¢ =2. This time g(x) = x2+2x+2 evenly divides p(x) and the quotient is x2—2x+2.
Therefore, p(x) = (x2+2x+2) (x2-2x+2). [J

i

Unfortunately, the running time of the Schubert-Kronecker algorithm is exponential in the degree
of p, and so it is practical only for polynomials of very low degree.

2. Simplifying the Problem

Our problem can be simplified greatly by restricting the types of polynomials considered. We
first show how the factorization of a polynomial with an arbitrary leading coefficient can be
determined from that of an "equivalent” monic polynomial.
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Suppose we want to factor a polynomial p(x) whose leading coefficient ¢, # 1. We perform the
following steps:

Step 1. Form g(x) by substituting x/c,, for x in p(x) and multiplying by c,!.

Step 2. Factor g(x).

Step 3. Reverse the substitution: p(x) = 1/c,! g(c,x).

Example 2-1. Here's a simple example, p(x) = 2x2+3x+1. First, we form
qix) = 212 /22 +3 (x/2)+1) = x2+3x+2.
Next, we factor the monic polynomial: g(x) = (x+2) (x+1). Finally, we reverse the substitution to

uncover the factorization
p(x) = 121 (2x+2)(Xx+1) = x+1)(2x+1). [

If we start with polynomials that are "primitive" (7.e., the greatest common divisor (gcd) of the
original coefficients is removed), we can remove the gcd of the coefficients from each factor
produced at Step 3 to obtain the final result.

A second simplification involves the detection of repeated factors. These are found quickly by
computing the square-free decomposition. The following theorem provides a test for repeated
factors. Its proof embodies an algorithm for computing the square-free decomposition that
involves taking only derivatives and polynomial greatest common divisors.

Theorem 1. p has repeated factors if and only if gcd(p, p) = 1.

Example 2-2. A polynomial in square-free form is
px) = 2+ 1) (2 - 1)* (33 +3x)°.
Once the square-free form has been found, each of its components can be factored separately to
produce the complete factorization,
px) = 2+ 1) (x— D4 (x+ D45 (x2+3)7.
Note that p'(x) = 2x (x2-1)* (x3+3x)3 + 8x (x2+1) (x2-1)3 (x3+3x)° + 15 (x2+1)2 (x2-1)* (x3+3x)*
and ged(p, p) =2 - 13 (3 +3x)4 £ 1. []

With the two simplifications presented in this section, our attention can be directed to the problem
of factoring a monic polynomial with no repeated factors.

3. Roundabout Factorization

We noted that the Schubert-Kronecker algorithm runs very slowly when implemented on a
computer. So how do today's computer algebra systems factor? They employ a "roundabout”
technique first suggested by Kurt Hensel in 1908. This method, shown diagrammatically in
Figure 1, is based on factoring a polynomial modulo a prime number m, and then "lifting" this
result to a factorization over the integers. The key idea behind roundabout factorization is the

following.

Theorem 2. If p(x) is monic and p(x) = s(x) #(x) over the integers, then p(x) = s(x) #(x) mod m for
every prime m.
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Factors of p(x)

p(x) in Z[x] in Z[x]
| l
choose | | lift
primem | f
| |
p(x) mod m Factors of p(x) mod m
in Zy,[x] in Zy,[x]

Figure 1. Roundabout Factorization

Note, importantly, the reverse of Theorem 2 is not always true! For example, x2+1 is irreducible
over the integers but factors mod 2 as (x+1)2. x*+1 is irreducible over the integers but factors
modulo every prime. The next two examples illustrate the usefulness of the theorem.

Example 3-1. Consider p(x) = x6+4 and its modulo 11 and 13 factorizations:
px) = (2+5)(x2+2x+5)(x2+9x+5) mod 11
= x3+3)(x3+10) mod 13
Since p has three factors of degree 2 mod 11, any factorization over the integers must involve
either (1) three factors of degree 2 or (2) one factor of degree 4 and one of degree 2. Similarly,
since p has two factors of degree 3 mod 13, its integer factorization must also involve two factors

of degree 3. These two modular factorizations are incompatible, so p is irreducible over the
integers. (This can also be inferred immediately from the fact that p is irreducible mod 7.) []

Example 3-2. Let's determine the factorization of p(x) = x0~1 from its modulo 3 factorization,
p(x) = (x+1)3 (x+2)3 mod3.
p1 = x+1 mod 3 corresponds to x+1 over the integers, and p, = x+2 mod 3 corresponds to x—1.
Since p, and p, evenly divide p over the integers (i.e, rem(p, p;) = rem(p, p,) = 0), they are both
factors of p. After dividing p; and p, out of p, what remains is g(x) = x*+x2+1. Moreover since
rem(q, p;) = rem(q, p,) = 3, p; and p, are not repeated factors of p over the integers. Next, we
take the p;s pairs:
p1P2 = x> +2mod3 =x2 -1 over Z[x]

P12 =x2+2x+1mod3 = x2—x+ 1 over Z[x]

P2 =x2+x+1mod3 = x2+x+ 1 over Z[x]
and see if each product divides g (and hence p) over the integers. We find that rem(q, p;?) =
rem(q, p,2) = 0 but rem(q, p1 p2) = 3, so p;2 and p,? are factors of p over the integers. Therefore,
the desired factorization is p(x) = (x+1) (x-1) (x2—x+1) (x2+x+1). []

We had just enough "wiggle room" in Example 3-2 to deduce the factorization over the integers
from the modulo 3 factorization since all the coefficients of the factored polynomial are between
—1 and +1. We do not, in general, know the coefficients of the factored polynomial in advance.
However, an inequality attributed to Maurice Mignotte (1974), building upon earlier work of
Edmund G. H. Landau, enables us to get a fairly good bound on their size, thereby enabling us to
choose a suitable prime modulus m.

165



4. Distinct Degree Factorization

At the heart of the roundabout method is the ability to factor a polynomial modulo a prime
number m. Two strategies are available: one due to Elwyn R. Berlekamp (1967) and the other to
David G. Cantor and Hans Zassenhaus (1979). The latter technique, called distinct degree
Jactorization, is considerably simpler and we describe it here. The basis of the method is the
following remarkable theorem.

Theorem 3. x™ —x is the product of all irreducible polynomials over Z,,[x] whose degree divides r.

Example 4-1. Let's use the theorem to find the irreducible polynomials modulo 2 of degrees
1,2 and 3. Setting m =2 and r = 1, we find that

¥—x=x(x+1) mod2
is the product of all irreducible polynomials of degree 1 over Z,[x]. Substituting » =2,
¥-x=x@+1)E2+x+1) mod?2
is the product of all irreducible polynomials of degrees 1 and 2. Similarly with r = 3,
WB-x=xE+DE+x2+1D)E3+x+1) mod2
is the product of all irreducible polynomials of degrees 1 and 3. []

Example 4-2. Now let's use Theorem 3 to factor p(x) = x15+1 modulo 2. Letting g(x) = x2"x,

we can determine the linear factors (degree d = 1) by finding the greatest common divisor of p
and g; mod 2,

51() = ged(p, q1) = ged(xP+1,x2-x) = x+1 mod 2.
So p has 1 factor of degree 1, s;(x) = x+1. Now divide s; out of p, then find the degree d = 2
factors the same way,
5p(x) = ged(plsy, q3) = ged(xl4+x34x1 24 Ly 1045915843 T x 6 xS+ x4+x34x24x+ 1, x4—x)
=x2+x+1 mod?2.

There is one degree 2 factor, s5(x) =x2 +x + 1. Now look for any degree d = 3 factors,

s3(x) = ged(p/s15y, g3) = ged(x12+x9+x6+x3+1,x8-x) = 1 mod?2.
There are none. Next look for degree d = 4 factors,

54(x) = ged(p/s15,53, q4) = ged(x12+x% +x6 +x3 + 1, x16 —x)
=x124+x9+x6+x3+1 mod?2.

There are three degree 4 factors, and that's all that's left of p. The problem remains of splitting
these three degree 4 factors,

s400= A+ +x2+x+ DA +x3+1)(*+x+1) mod2.

This is done using another set of gcd computations described by Cantor and Zassenhaus. []
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