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Introduction

We have created several activities for undergraduates using Derive to illustrate the
beautiful geometric behavior of Mébius transformations. The purpose of this short
note is to briefly describe the key aspects of these activities and how Derive is used
in these activities. The activities are designed to meet several important goals: geo-
metric visualization, hands-on activities, reinforcement of basic mathematics, and the
establishment of connections between several areas of mathematics.

A wonderful aspect of Derive as a pedagogical tool is that it is a versatile computer al-
gebra system that still requires the user to perform a fair amount of basic precalculus
mathematics to create more sophisticated examples and explorations. The activities
which are briefly described here can be presented to students at several levels. At a
higher-level, students could be expected to create from scratch the Derive routines
to construct the examples. At a lower-level, the instructor can provide the students
with a copy of the collection of the routines in the file mobmath.mth [3] and more
detailed instructions about constructing the examples. Even though these activities
were designed for Derive, they are easily transferable to any computer algebra system

with graphing capabilities.

Mo6bius Transformations

Let M denote the group of Mobius transformations z — ‘c‘zzj:g acting on C = CU{oo},
where a, b, ¢, d are complex numbers such that ad —bc = 1. The group M is the group
of orientation-preserving conformal automorphisms of C and is called the Mdbius
group. We can further identify M with the group PSL(2, C), the group of 2 x 2
matrices with complex coefficients, determinant 1, modulo the equivalence relation
A ~ —A. By using the 2 X 2 matrix representation for Mobius transformations, we
can easily create short routines in Derive to calculate properties of the Mobius trans-
formations and obtain parametric representations which we can plot.
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In the upper halfspace model of hyperbolic three-space H3, hyperbolic planes are
either vertical planes or hemispheres which are orthogonal to its boundary at infinity,
C. In both cases, the boundary at infinity of a hyperbolic plane is a either a circle
or line, which we consider as a circle through oo; For simplicity, we refer to both
circles and lines as generalized circles. Each element in M is the product of an even
number of reflections in circles in C. We can extend the action of each element in
M to an orientation-preserving isometry of the upper halfspace model of hyperbolic
three-space H? by reflecting in the corresponding hyperbolic planes bounded by the
generalized circles in C which generate the Mobius transformation. This extension
is called the Poincaré extension and takes the following form in the upper halfspace

model:

fle.t) = (az + b)(cz + d) + act? lad — belt
T lcz +d|? + |22 ez +d]2+ |22 )’

where f(z) = £ (See [1] for details.) We thus can identify the group Isom™ (H?) of
orientation-preserving isometries of H* with PSL(2,C). Using the Poincaré exten-
tion, we use a simple user-defined routine Poincare Ext_Image in Derive to obtain
parameterizations of images of hyperbolic planes under Mobius transformations to

geometrically investigate the three-dimensional geometric aspects of Mobius trans-
formations.

Geometric Visualization

The primary goal of the activities is to obtain deep geometric intuition about the
behavior of Mobius transformations. One of the activities, Preservation of Circles
Under Mobius Transformations [4], is a strictly two-dimensional investigation of the
classical result that Mobius transformations map generalized circles in C to general-
ized circles in C (for example, see Palka [6], p. 398). This activity uses an user-defined
routine called Plane Circ_Image to obtain parametric representations of images of
circles under a Mobius transformation to visualize the aforementioned phenomenon.
The activity proceeds to verify that the image of a generalized circle under a Mobius
transformation is indeed a circle by constructing appropriate perpendicular bisectors
of images of points, which, in turn, leads to the derivation of the Cartesian equation

of a circle or a line using basic analytic geometry.

The other activities focus on developing the inter-relationship between the two- and
three-dimensional behavior of Mobius transformations. The novel aspect of the in-
vestigations between the two- and three-dimensional geometry is that these activities
introduce the mathematics in a suitable manner for undergraduates, whereas the
three-dimensional geometry of Mobius transformations is not part of the standard
undergraduate course in complex analysis and is not introduced, if at all, until grad-
uate courses in topology or hyperbolic manifolds.
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Hands-on Activities, Reinforcement, Connections

Our activities approach new mathematical content by investigating concrete exam-
ples that require the students to perform basic calculations using familiar mathemat-
ics: basic geometry, analytic geometry, trigonometry, and parametric representations.
Even though Derive is used to perform the necessary calculations, the student must
demonstrate a sound understanding of the basic mathematics to enter the appropri-
ate expressions into Derive. This dependence on precalculus mathematics can help
demystify the abstraction of the new mathematics as well as reinforce and re-integrate
this basic mathematics in advanced courses outside the calculus sequence. In particu-
lar, these activities can provide nice illustrations of applications of basic mathematics
to pre-service secondary education students that can help form deeper connections
between the concepts that they will teach in high school.

These activities also illustrate connections between advanced mathematical topics.
The activity Construction of a Hyperbolic Surface and Kleinian Group [2] not only
uses complex variables and hyperbolic geometry but also integrates topology and
algebra by using the Poincaré Polyhedron Theorem (see [1] or [5]), to construct
the fundamental domain of discrete group actions on the hyperbolic plane and on
hyperbolic three-space, by using group presentations, and by investigating the cor-
responding quotient manifolds. This activity also provides a constructive approach
to visualizing the fact that closed surfaces of genus greater than one naturally admit

hyperbolic structures (see [7]).

Sample Activity: Visualization of Hyperbolic Transformations

A hyperbolic transformation has two fixed points in H* U C, both of which are in C
and takes the form:

A2
0 Al Sz, t) = Az, [AE), |A #1

The hyperbolic transformation is purely hyperbolic if A is real and positive and is
otherwise called lozodromic.

This activity illustrates the relationship between the two- and three-dimensional
geometry of a hyperbolic M6bius transformation. The activity first investigates the
two-dimensional aspects of a hyperbolic transformation. The investigation includes a
study of representing a purely hyperbolic transformation as the product of reflections
in two circles € and a loxodromic transformation as the product of four reflections in
circles in C, dilation and rotational components of the transformation, and identifi-
cation of the attracting and repelling fixed points of the transformation. Additional
geometric information is obtained from the three-dimensional viewpoint. A hyper-
bolic transformation has a geodesic axis in H® joining its fixed points in C. This
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axis is either a vertical line (if one of the fixed points is at co in the upper halfspace
model of H3) or a semicircle orthogonal to C (if both fixed points are finite.) The
rotational component observed in the two-dimensional investigation carries over to
a rotation about the geodesic axis. The two-dimensional dilation corresponds to a

three-dimensional translation along the geodesic axis.

A nice extension of the three-dimensional investigation is to construct the boundary
of a regular hyperbolic neighborhood of the geodesic axis. The boundary will be a
Euclidean cone with vertex at the finite fixed point and will be a banana-shaped sur-
face converging to points at both of the fixed points. Finding the parameterization of
the cone-shaped surface requires some analytic geometry and trigonometry, whereas
the construction of the banana-shaped surface requires more trigonometry and some
understanding of conjugation in the Mdbius group. A hyperbolic transformation
generates a discrete, infinite cyclic subgroup I' of the Mobius group. A further exten-
sion of the activity investigates the relationship between the a fundamental domain F'
of the action of I' on H? and a fundamental domain D = &F of the action of I on C\
{fixed points of v}. From this we can observe that [H* U (C\ {fixed points of y})]/T

is manifold with boundary (C \ {fixed points of v})/T.
Derive Routines for Mo6bius transformations

We have developed a package of Derive routines called mobmath.mth [3], which can
be obtained from the author. Below we provide two routines, which allow the Derive
user to obtain parameterizations of images of circles, and (hemispherical) hyperbolic
planes. The routine Plane_Circ_Image(r, a,b, M) returns the image of the parametric
representation (r cost+a,sint+b) of the circle of radius r centered at the point (a, b)
in the plane under a 2 x 2 matrix representation of a Mobius transformation M.

Plane Circ_Image(r,a,b,M) :=
Prog

zZ =
f1(z) := (ELEMENT(M, 1, 1)-z + ELEMENT(M, 1, 2))/(ELEMENT(M, 2,1)-z

+ ELEMENT(M, 2, 2))

z := 1 COS(t) + a + 1.r-SIN(t) + b)
[Re(f1(z)),IM(£f1(2))]

RETURN v2

The second routine called Poincare Ext_Image(M,vec) produces the image of the
ordered triple vec under a 2 x 2 matrix representation of a M6bius transformation M.
To study basic three-dimensional geometric properties of a Mobius transformation,
we often take vec to be a parameterization for a hemisphere whose boundary circle
lies in the complex plane, which is a hyperbolic plane in the upper halfspace model

for H3.
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Poincare_Ext_Image(M, vec) :=
Prog
o := ELEMENT (vec, 1)
G := ELEMENT (vec, 2)
ELEMENT (vec, 3)

7 =
z :=x+ iy
g(x, y, t) := RE(((A-z + B)-CONJ(C:z + D) + A-CONJ(C)-t"2)/(ABS(C-z

+ D)2 + ABS(C)2-t"2))
h(x, y, t) := IM(((A-z + B)-CONJ(C-z + D) + A-CONJ(C)-t"2)/(ABS(C-z

+ D)2 + ABS(C)2-t"2))
1(x, y, t) := ABS(A-D - B- C)-t/(ABS(C-z + D)2 + ABS(C)2-t"2)

p := [gla, B, V), hia, B, 7, o, B, 7)]
RETURN p

For Further Information

Complete activities and the latest version of mobmath.mth can be obtained by
contacting the author directly at tcomar@ben.edu.
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