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The Complex Numbers, and the Quaternions are the only possible associative division
algebras over thereals. The Complex Numbers can be viewed as a 2-dimensional vector space over
the reals, while the Quaternions are a4-dimensional real vector space. Multiplication by a unimodular
complex number is, essentially, rotation (in the plane) through the angle (amplitude) of the unimodular
complex multiplier. Analogously, there is a multiplication operation, though with a slight twist, by
unimodular quaternions which accomplishes arotation in 3-space.

If v isavector in 3-space, then v can be viewed as a pure quaternion, and if g is a unimodular
quaternion, then rotation of v through an angle determined by ¢, and about an axis, also determined by
q, isgiven by

Rq: vV—>qvgt.

The purpose of this short note is to develop a calculator program (for the TI-83) that will
perform the transformation above. And this may be worthy of some slight consideration because the
TI-83 does not have symbolic algebra capabilitiestaons in 3-space, using quaternions, is favored,
in applications, over the traditional linear algebra approach, using 3 by 3 matrices, because of the
savings in computer storage. Itis much cheaper to store the components of the qugtérarort is
to store the 9 entries of a 3 by 3 matrix! Besides, the quaternion’s components display the rotation
axis, as well as the angle of rotation.

After having said that, there is a bit of irony in the approach we take here, since we will rely on
a matrix representation d@ (the quaternions) in order to effect the transformations (rotations). But,
of course, our objective is not savings. Rather, we only seek to be able to exploit the hand-held
calculator as far as is possible.

Quickly reviewing the multiplication it : We use the standard basis,i,Lk, where

i2=j2=k?®=-1, and



ij =k jk=1i ki=j, ad

ji = -k, kj =i, ik=—- (anti-commutativity).

Extending to al of Q, by linearity and associativity, we get a4-dimensional algebra over thereals. It
is customary to write quaternions in the form

(s,%Y,2)
to stand for
Sk 1l+X*xi+y*xj+zxk

We use the * here to emphasize the operation of multiplying a quaternion by areal number. This shall
be suppressed in the rest of this note. It is also customary to express the quaternion (s,x,y,z) as

<s, V>,

with sreferred to as the scalar part, and v the vector part, with vector components x,y,z. If s = 0, we
say that we have a pure quaternion. The pure quaternions are sometimes identified with R2. It is now
easy to verify that

S, X1,Y1,21)(W, X2,Y¥2,Z2) =< §;V1 > <W,V, > = <SW—-VjieVy SVo+W;31+ViXV2>
2

where the operations » and x arethe familiar dot product, resp., cross product, in R3.

When g = (s,x,Y,2), wedefine ||g] = /s? + x? +y? +z? , themodulus of g. And, of course, if
llall = 1, we say that qis unimodular. Inthis case, it is possible to express q as

g= <SV> = < cos(%), sin(%)v >,

asort of polar form for g, where V isaunit vector in the direction of v, the axis of the rotation, and 6
is the angle through which we rotate.

Now takeq = <'s, v > = < cos(%), sin(4)V >, aunimodular quaternion, as above, and
suppose that w is any vector in R3. It is fairly straightforward to verify that the transformation

Rq : w—>qwq?

is a linear transformation iR%; that v is an eigenvector belonging to the eigenvalue 1; that the plane
through the origin, orthogonal tg is an invariant subspace, and that the transformation, restricted to

this plane, is a rotation through the angleThis is all well known, and an excellent ttegent of these
ideas may be found in Chapter Six of [1].

For this note, we shall be content to develop a calculator (TI1-83) program to perform the rotation

transformation. We consider the right regular representati@ of which
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Then the quaternion

q=(5%xYy,2) ——>sE+xA+yB+2C =

s x y z |
X S -z Yy
Yy z s X

-Z -y X S
With the TI-83, we can construct, and store, the matrices E, A, B, and C above. The following
program should be self-explanatory:



The Program

PROGRAM: ROTATION
Input “SCALAR:”, S

‘Input “[A]-COEFF:", A
:Input “[B]-COEFF:", B
:Input “[C]-COEFF:",C
(S +A2 £ B2+ C2)—>W

(W) —> S
(AW) — > A
(BIW)— > B
(CW)—>C
Input “1ST:", X
Input “2ND:", Y
:Input “3RD:", Z

Sx[E]+Ax[A]+Bx* [B] +C % [C] — > [G]
Xk [Al+Y x| ]+Z*[C]——>[ ]

[G] * [F] * [G] ™t — - > [H]

:Disp [H]

:Pause

:2*arccosg) — > L

:Disp “ANGLE IS”, L,“RADIANS’

:Disp “ANGLE IS”, L * 180/r, “DEGREES”

Note that the first row of each matrix representing a quaternion contains the components of the
guaternion in the proper order, and the first column is the conjugate of that quaternion.
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