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The Complex Numbers, and the Quaternions are the only possible associative division
algebras over the reals. The Complex Numbers can be viewed as a 2-dimensional vector space over
the reals, while the Quaternions are a 4-dimensional real vector space. Multiplication by a unimodular
complex number is, essentially, rotation (in the plane) through the angle (amplitude) of the unimodular
complex multiplier. Analogously, there is a multiplication operation, though with a slight twist, by
unimodular quaternions which accomplishes a rotation in 3-space.

If v is a vector in 3-space, then v can be viewed as a pure quaternion, and if q is a unimodular
quaternion, then rotation of v through an angle determined by q, and about an axis, also determined by
q, is given by

Rq: v—–> qvq?1.

The purpose of this short note is to develop a calculator program (for the TI-83) that will
perform the transformation above. And this may be worthy of some slight consideration because the
TI-83 does not have symbolic algebra capabilities. Rotations in 3-space, using quaternions, is favored,
in applications, over the traditional linear algebra approach, using 3 by 3 matrices, because of the
savings in computer storage. It is much cheaper to store the components of the quaternionq than it is
to store the 9 entries of a 3 by 3 matrix! Besides, the quaternion’s components display the rotation
axis, as well as the angle of rotation.

After having said that, there is a bit of irony in the approach we take here, since we will rely on
a matrix representation ofQ (the quaternions) in order to effect the transformations (rotations). But,
of course, our objective is not savings. Rather, we only seek to be able to exploit the hand-held
calculator as far as is possible.

Quickly reviewing the multiplication inQ : We use the standard basis, 1,i, j,k, where

i2
= j2

= k2
= ?1, and



ij = k, jk = i, ki = j, and

ji = ?k, kj = ?i, ik = ?j (anti-commutativity).

Extending to all of Q, by linearity and associativity, we get a 4-dimensional algebra over the reals. It
is customary to write quaternions in the form

Âs,x,y, zÃ

to stand for

s D 1 + x D i + y D j + z D k.

We use the D here to emphasize the operation of multiplying a quaternion by a real number. This shall
be suppressed in the rest of this note. It is also customary to express the quaternion Âs,x,y, zÃ as

< s, v >,

with s referred to as the scalar part, and v the vector part, with vector components x,y, z. If s = 0, we
say that we have a pure quaternion. The pure quaternions are sometimes identified with R3. It is now
easy to verify that

Âs,x1,y1, z1ÃÂw,x2,y2, z2Ã =< s,v1 > < w, v2 > = < sw ? v1 6 v2, sv2 + wv1 + v1 ¼ v2 >

where the operations 6 and ¼ are the familiar dot product, resp., cross product, in R3.

When q = Âs,x,y, zÃ, we define ||q|| = s2
+ x2

+ y2
+ z2 , the modulus of q. And, of course, if

||q|| = 1, we say that q is unimodular. In this case, it is possible to express q as

q = < s,v > = < cosÂ S
2
Ã, sinÂ S

2
Ã
Êv >,

a sort of polar form for q, where Êv is a unit vector in the direction of v, the axis of the rotation, and S

is the angle through which we rotate.

Now take q = < s, v > = < cosÂ S

2 Ã, sinÂ S

2 Ã
Êv >, a unimodular quaternion, as above, and

suppose that w is any vector in R3. It is fairly straightforward to verify that the transformation

Rq : w—–>qwq?1

is a linear transformation inR3; that v is an eigenvector belonging to the eigenvalue 1; that the plane
through the origin, orthogonal tov, is an invariant subspace, and that the transformation, restricted to
this plane, is a rotation through the angleS. This is all well known, and an excellent treatment of these
ideas may be found in Chapter Six of [1].

For this note, we shall be content to develop a calculator (TI-83) program to perform the rotation
transformation. We consider the right regular representation ofQ, in which



1 ? ? ? >

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

= E

i ? ? ? >

0 1 0 0

?1 0 0 0

0 0 0 ?1

0 0 1 0

= A

j ? ? ? >

0 0 1 0

0 0 0 1

?1 0 0 0

0 ?1 0 0

= B

k ? ? ? >

0 0 0 1

0 0 ?1 0

0 1 0 0

?1 0 0 0

= C

Then the quaternion

q = Âs,x,y, zÃ ?? ? > sE + xA + yB + zC =

s x y z

?x s ?z y

?y z s ?x

?z ?y x s

.

With the TI-83, we can construct, and store, the matrices E, A, B, and C above. The following
program should be self-explanatory:



The Program

PROGRAM: ROTATION
:Input “SCALAR:”, S
:Input “[A]-COEFF:”, A
:Input “[B]-COEFF:”, B
:Input “[C]-COEFF:”,C
: ÂS2

+ A2
+ B2

+ C2Ã —>W
:(S/WÃ ?? > S
:ÂA/WÃ ?? > A
:ÂB/WÃ ?? > B
:ÂC/WÃ ?? > C
:Input “1ST:”, X
:Input “2ND:”, Y
:Input “3RD:”, Z
:S D ÄEÅ + A D ÄAÅ + B D ÄBÅ + C D ÄCÅ ?? > ÄGÅ

: X D ÄAÅ + Y D ÄBÅ + Z D ÄCÅ ?? > ÄFÅ

:ÄGÅ D ÄFÅ D ÄGÅ?1
? ? > ÄHÅ

:Disp [HÅ

:Pause
:2*arccos(SÃ ?? > L
:Disp “ANGLE IS”, L, “RADIANS”
:Disp “ANGLE IS”, L D 180/̂ , “DEGREES”

Note that the first row of each matrix representing a quaternion contains the components of the
quaternion in the proper order, and the first column is the conjugate of that quaternion.
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