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ABSTRACT

This paper presented various issues about  pedagogical and cognitive aspects of problem

solving and explored ways to lessen the heavy cognitive load of a problem solving task.  It established a

problem type schema for students at different levels.  It recognized the role of modern technology as a

cognitive tool that promotes learning mathematics with understanding.  It designed the framework of a

techno-mathematics curriculum for algebra at the collegiate level.

INTRODUCTION

As modern civilization requires relentless quantification and critical evaluation of information in

daily transactions, it becomes necessary to develop newer ways of thinking and reasoning that can be used

to learn and do mathematical activities.   Through problem solving for instance, we acquire a functional

understanding of mathematics needed to cope with the demands of society.

School mathematics of the twenty first century is viewed by educators to be that which should

engage a learner in problem solving and reasoning.  It should also foster deep understanding and develop

the learner’s critical and analytical thinking.  Instruction should not be limited to plain mastery of

algorithms or the development of certain mathematical skills.  It should involve learners in investigation

through “exploring, conjecturing, examining and testing” (NCTM, 1990, p.95).  It should be tailored to

promote reflective thinking among students.

A wealth of research on mathematics education and cognitive science in the last decade has dealt

with the pedagogical and cognitive aspects of problem solving.  Rivera and Nebres (1998) note

specifically  “the numerous published research studies of Fennema and Carpenter on Cognitively Guided
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Instruction (CGI) in the last quarter of this century [which] point to the pernicious effects of status quo

ways of thinking about mathematics and problem solving (i.e. existing mathematics culture)”(p.11).  CGI

recognizes the “acculturation of school children to an algorithmic approach to learning basic arithmetical

facts”  which pervade the current school mathematics culture and which have been proven to be

“detrimental to children’s own ways of thinking about problem solving and computations” (p.12).

Bishop (1999) adds that “research has shown the importance of the idea of situated cognition

which describes the fact that when you learn anything you learn it in a certain situation” (p.41).  Thus for

learning to become meaningful,  the learner has to actively participate in the formation of mathematical

concepts.  She should not passively receive knowledge from an authority but should be involved in the

construction of knowledge.

The theory of active construction of knowledge influenced many learning theories formulated by

staunch contemporary mathematics educators like Von Glasersfeld, Cobb, Bauersfeld, Vygotsky and

numerous others (Rivera, 1999).  In fact, “problem solving and mathematical investigations based on a

constructivist theory of learning, have been the main innovations or revivals for the last decade” according

to Southwell (1999, p.331).

Willoughby (1990) believes that the abundant books, pamphlets and courses on critical thinking

and problem solving that have been propagated in the 1980s cannot be of help unless certain pedagogical

misconceptions are clarified.  This includes prescribed rules such as finding key words in a problem to

decide the appropriate operations on the values given in the problem, or applying arithmetic algorithm to

any word problem.  Developing critical and analytical thinking through problem solving takes time and a lot

of teacher’s commitment and dedication. (Willoughby, 1990; Barb and Quinn, 1997).

Developing critical and analytical thinking involves pedagogical conceptions with a philosophical

basis.  This paper adheres to the constructivist theory of learning and promotes the belief that problem

solving processes rest on basic thinking skills which are best developed within a constructivist framework.

  Another challenge of the new millenium is the proper use of the ever advancing technology in

education.   Researchers have to look into the quality of instruction and curriculum which utilize

technology.   Educational technology should be guided by pedagogical principles that guarantee effective
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learning, and not subordinated to technological ends.  Thus, “technology should be used to advance

educational programs, [and] should not determine programs” (Witt, 1968, p. 145).  How to empower

students further in learning with the use of technology should be the concern of curriculum designers.

In the light of existing literature base on mathematics instruction and flourishing research studies

on mathematics teaching and learning, this paper explores issues and finds ways of  fostering critical and

analytical thinking through problem solving.  Then it draws implications regarding the design of a techno-

mathematics curriculum for algebra at the collegiate level that establishes problem type schema.  This

design is supported by a philosophical basis of the role of technology in the acquisition of mathematical

knowledge.  The design is not instrument specific, since it is intended to be adaptable to whatever

technology is available to both teachers and students be it in progressive countries or in the third world

countries.

THE LEARNER AND COGNITIVE PROCESSES

Recent research studies on mathematics education have placed its focus on the learners and their

processes of learning.  They have posited theories on how learners build tools that enable them to deal with

problem situations in mathematics.  Blais reveals that

the philosophical and theoretical view of knowledge and learning embodied in constructivism
offers hope that educational processes will be discovered that enable students to acquire deep
understanding rather than superficial skills. (Blais, 1988, p.631)

As learners experience their power to construct their own knowledge, they achieve the satisfaction that

mathematical expertise brings.  They acquire the ability to engage in critical and analytical context of

reflective thinking.  They develop systematic and accurate thought in any mathematical process.

O’Daffer and Thorquist (1993) define critical thinking as “a process of effectively using skills to

help one make, evaluate and apply decisions about what to believe or do”(p.40).  They cited the

observations of Facett(1938) on a student using critical thinking as one who

1.  Selects the significant words and phrases in any statement that is important and asks that they

be carefully defined;

2.  Requires evidence supporting conclusions she is pressed to accept;

3.  Analyzes that evidence and distinguishes fact from assumption;
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4.  Recognizes stated and unstated assumptions essential to the conclusion;

5.  Evaluates these assumptions, accepting some and rejecting others;

6.  Evaluates the argument, accepting or rejecting the conclusion;

7.  Constantly reexamines the assumptions which are behind her beliefs and actions.

Critical thinking abilities can only be developed in a setting which the learner has ample

knowledge and experience.  Thus, fostering critical thinking in a certain domain entails developing deep

and meaningful learning within the domain.

Learners can acquire critical thinking strategies by using what cognitive and developmental

psychologists call a cognitive schema.  Smith, Knudsvig and Walter (1998, p.50) describe a cognitive

schema to be “a scheme, method, process by which (one) can see, organize and structure information” for

better comprehension and recall.  Through the schema learners interpret, analyze, organize and make sense

of every information given in a problem situation through a constructive process called reflective

abstraction.

Through reflective abstraction, critical thinkers are able to assimilate information into their

mathematical network and build from their prior knowledge.  They can accommodate new ideas including

those that conflict with what they know or believe and negotiate these ideas.  They are willing to adjust their

belief systems after reexamining information.  They are also able to generate new ideas based on novel

ideas that are available to them. They are expert problem solvers who can handle abstract problem

information and make sense of different problem situations.

On the other hand, novice problem solvers are not able to handle abstract mathematical concepts.

They have difficulty recognizing underlying abstract structures and often need to make detailed

comparisons between current and earlier problems before they can recognize the abstract information in the

solution of the current problem ( Reed ,1987; Reed, Dempster, Ettinger, 1985; Anderson, 1984; Ross, 1987,

as cited by Bernardo, 1994).  They usually resort to algorithmic activity and not to the perception of

essence.  Blais (1988) observed that  “they resist learning anything that is not part of the algorithms they

depend on for success”(p.627).  They tend to be very shallow in dealing with problem situations because of

the lack of depth in their experiences while engaging in mathematical activities.
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All problem solvers, whether experts or novices, develop a cognitive schema which cognitive

scientists call problem-type schemata when confronted with a mathematical problem.  According to

Bernardo (1994), “[k]nowledge about the problem categories include information about the relevant

underlying principles, concepts, relations, procedures, rules, operations and so on”(p.379).  Further, he

adds, “problem-type schemata are acquired through some inductive or generalization process involving

comparisons among similar or analogous problems of one type”(p.379).  Learners represent, categorize and

associate problems to be able to determine the appropriate solution.  The expert’s schematic processing

leads to an accurate analysis of the problem which the novice hardly achieves.

Bernardo (1994)  claims that “the novices’ schemata (expectedly) include[s] mainly typical

surface-level information associated with a problem type, whereas experts’ schemata include[s] mainly

statements of abstract principles that [are] relevant to the problem type”(p.380).  One example of the

difference in the processing of experts and novices given by Blais (1988) is  on their reading process of a

mathematical material.  Blais (1988) observes that,

[w]hen novices read, the process almost always appears to be directed toward the acquisition of
specific information that will be needed for algorithmic activity, (whereas) the reading process
used by experts is directed toward the perception of essence. (p.624)

Experts seem to readily categorize the mathematical information in the material being read,  thus facilitating

the processing of information that lead to the correct solution.  They are able to attain some sort of a visual

form of say an algebraic expression and are able to communicate this before they perform the algorithmic

activity.  Besides, they can determine errors and attain a deep understanding of the underlying structure of

the mathematical concept.

Experts rely not only on concepts and procedures when confronted with a mathematical problem.

They also have access to metacognition which is the knowledge used by experts in “planning, monitoring,

controlling, selecting and evaluating cognitive activities” (Wong, 1989, Herrington, 1990, English, 1992 as

cited by English-Halford, 1992; Bernardo, 1997).  With this higher order thinking skill, problem solvers are

assured of the success of every mathematical strategy they employ.
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It is therefore the goal of education to help novices gain expertise in mathematical activities such

as problem solving.  In the next section, we deal with a few different views of studies conducted on

didactics of problem solving.

ISSUES ON TEACHING AND LEARNING PROBLEM SOLVING

Smith, Knudsvig and Walter (1998) advocate a cognitive schema which learners can use to acquire

critical thinking strategies.  They call it the TCDR for TOPIC-CLASS-DESCRIPTION-RELEVANCE.

Thus, when given a learning material, students should ask the following questions:

• What TOPIC I must understand?
• What overall CLASS does this topic belong?
• What is the DESCRIPTION of the topic?
• What is the RELEVANCE of the topic?
(p.3)

These questions help learners interpret, analyze, organize and make sense of the information that are given

in the material for better processing of learning.  Once this becomes the framework of the learners, they gain

strength and clarity of thinking.  Several schemes have been offered by mathematics educators for solving

word problems.

The most versatile and widely used scheme for problem solving is the one formulated by George

Polya (1957).  These include

working simpler problems, restating a problem, decomposing or recombining a problem, drawing
figures, making charts or organized lists, exploring related problems, using logical deduction,
using successive approximations, using guess-and-check methods, and working backwards.
(NCTM, 1989, as cited by Barb and Quinn, 1988, p. 537)

Polya (1957) also developed a framework for problem solving in terms of  such general phases as

“understanding the problem, divising a plan, carrying out the plan and looking back” (cited by Barb and

Quinn, 1997, p. 537).  If carried out effectively, then the problem solver becomes successful in handling a

problem situation.  But the process involved in traversing these steps is quite complex.  The learner has to

use her prior knowledge, apply acquired mathematical skills, understand the context of the problem

situation, and choose the appropriate strategy in solving the problem.  This requires formal abstraction, a

higher order thinking skill that is available to experts alone.  What, then, can be done to help novices gain

intellectual power?
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By their success in working with simpler problems, novices gain confidence and are motivated to

work with more difficult ones.  Their analogical thinking can be best harnessed by using very concrete prior

experiences.  They are able to build their mathematical ideas from simple tasks and are able to acquire

mathematical skills.  Bernardo (1997) emphasizes the importance of the use of context problems that are

familiar to the students which “provides students with a concrete (possibly, real) grounding on the problem,

and which allows students to more easily draw from their existing knowledge about similar situations”(p.

11).  Hopefully, students become more involved in the difficult task of making learning meaningful.

Mathematics educators recommend the use of mental models to guide learning.  These mental

models (aids) come in the form of diagrams or drawings used to represent the structure of the concept.  The

development of strategies and mental modeling fall under the theory of analogies.  The effectivity of the

analogy lies in a learner’s ability to recognize the “correspondence between the structure of the aid and the

structure of the concept to be understood” (English-Halford, 1992, p. 121).  In this case,  the learner is able

to map the essence of the model into the essence of the concept,  and match or transfer specific conceptual

aspects of one domain into another.  This cognitive process promotes reflective abstraction.  It is

unfortunate, though, that certain popular pedagogical practices are counterproductive.

In the process of streamlining the problem solving task, teachers are sometimes tempted to use

artificial and fabricated ways of building skills which Blais (1988) refers to as remedial processing.  One

good example is the prescription of finding key words in a problem which may work for experts, but not

necessarily for novices.  Some novices use these key words to decide on the algorithm to apply,  with

complete disregard of the essence of the problem.  Key words prompt novices to add when they see the

word increase, or subtract when they see the word decrease in a problem.  Worse, some apply an arithmetic

operation on any two numbers that they see depending upon the key words that they find in the problem.  In

fact, even their use of formal symbolic expressions in the solutions of the problems may not even

communicate the essence of the given problem.

Blais (1988) laments that “[c]onventional instruction permits, allows, and sometimes blatantly

encourages algorithmic activity that is separate and isolated from the perception of essence”(p. 627).  This

may be due to the focus of instruction on the product and not the process of the mathematical activity.  In
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fact, explanations sometimes send the wrong signal that problem solving processes are neat, well organized

and easy as the teacher’s presentations on the board.  Consequently, novices are tempted to resort to rote

memorization of the algorithms, rules and formulas presented by the teacher.  They do not realize that

proficiency in problem solving is best achieved in recognizing  the essence of a given problem and the

application of the proper problem solving heuristics.  Understanding the structural relations in a

mathematical problem ushers the learners to reflective abstraction and gives them a sense of direction and

feeling of certainty.

Barb and Quinn (1997) advocate the use of multiple methods of problem solving including such

intuitively based methods as the guess-and-check method approximation.  Problem solvers can use

arithmetic computation with figures and charts and logical reasoning, and not necessarily algebraic

equations in finding solutions.  They believe that this strategy is more meaningful to a learner who is

beginning to use some form of reflective abstraction, than rote application of algorithms usually found in

textbooks.  Teachers who usually look for algebraic solutions should be convinced of the value of

developing the students’ problem-solving skills and refining their strategies using intuition and logic.  It

should be noted that the ultimate goal of this instructional method is to help learners build a good

knowledge base in solving word problems so they can achieve reflective abstraction in the process.

This belief was expressed by Owen and Sweller (1989) when they challenged the emphasis placed

on problem solving and heuristics in the 1980s and pointed out that “superior problem solving performance

does not derive from superior heuristics but from domain specific skills” (cited by Puut and Isaacs, 1992,

p.215).  They claim that the use of general cognitive strategies such as the means-end strategy impose heavy

cognitive load and hamper schema acquisition and rule automation.  It is because “a means - end tactic

involves comparing the initial conditions of a task against the goal set for that task, then searching for a

tactic that will transform either the goal or the initial conditions to be a bit more like one another” (Wine &

Stockley, 1998, p. 124).  This becomes very difficult especially when solving multistep problems.  The

solver has to analyze and break down the problem to subgoals, successfully transform each initial condition

and subgoal into the desired condition, repeat the tactic until the final goal of the problem is achieved.  The

learner has to see the overall structure of information, concepts,  operations,  rules, and all other elements
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that make up the whole schema of the problem.  It is preferred that problems be freed of a single goal.

When the problem becomes goal-free,  solvers are able to work forward from givens of the problem that

they are able to generate.  According to Wine & Stockley, “each iteration is a self-contained step that uses

whichever problem-solving technique is easiest for the student, [in which case] the drain on working

memory’s resources is minimized”(1998, p.125).  In fact, Sweller (1989) claims that “research shows that

freeing problems of singular goals can help students acquire schemas for solving problems “(cited by Wine

& Stockley, p. 125).  The development of domain-specific skills of learners may facilitate the development

of schemas that underlie genuine understanding and meaningful learning.

Another issue that is worth considering is the question of when students should engage in word

problems.  Word problems are usually treated as application problems since they are given after certain

mathematical concepts are introduced, with the aim of  using the concepts in solving the problems.  On the

other hand, word problems may be taught in context, i.e. they may be used to teach a mathematical idea or

process.  According to Laughbaum (1999) “[t]eaching in context also uses problems or situations, but they

are used at the beginning of a math topic for the purpose of helping students understand the mathematics to

be taught, or to create a motivating experience of the mathematics to follow” (p.1).   Certain groups looked

into the effects of application problems to the development of the skills of the learners.  One such group

called the Cognition and Technology Group of Vanderbilt (CTGV)  identified the shortcomings of the

application problems and came up with efficient ways of  teaching word problems in context.  The CTGV

has these to say about application problems:

1.  Instead of bringing real world standards to the work,  students seem to treat word problems 
mechanically and often fail to think about constraints imposed by real-world experiences.
2.  Single correct answers to application problems lead to misconceptions about the nature of 
problem solving and inadvertently teaches students for a single answer rather than seek multiple
answers.
3.  The goal of one’s search for a solution is to retrieve previously presented information rather 
than rely on one’s own intuition.  This may limit the development of people’s abilities to think
for themselves.
4.  They explicitly define the problems to be solved rather than help students to learn to generate 
and pose their own problems.  Mathematical thinkers tend to generate their own problems.
5.  The use of application problems lead to inert knowledge.  Inert knowledge is that which is 
accessed only in a restricted set of contexts even though it is applicable to a wide variety of
domain.
(1997, p. 40)
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These application problems are traditionally presented using general problem solving strategies which Polya

prescribed or the means-end strategy.  While some educators and researchers express the abovementioned

concerns, many mathematics educators still adhere to the conventional practices of teaching problem

solving.

Lawson (1990), in defense of conventional methods, explained that when done properly, “general

problem solving strategies play an important role in learning and transfer” (cited by English-Halford, 1992,

p. 120).  He described the three different types of general problem-solving strategies to include:

Task orientation strategies (which) influence the dispositional state of the student and include the
broad affective, attitudinal, and attributional expectations held by the student about a particular
task.  Executive strategies are concerned with the planning and monitoring of cognitive activity,
while domain-specific strategies include heuristics such as means-ends analysis and other
procedures developed by the problem solver for organizing and transforming knowledge (e.g.,
constructing a table or drawing a diagram).
(p. 120).

Lawson insisted that these strategies “have a general sphere of influence on cognitive activity during

problem solving and should be seen as distinct from strategies specific to a particular task” (p. 404, 1990,

cited by English-Halford, 1992, p.120).

 Bernardo (1997) recommends the use of variable problem contexts to promote abstraction.   He

claims that “[b]y presenting concepts in variable problem contexts, students will come to appreciate the

meaning and use of a particular concept or procedure in a variety of contexts”(p.12).  Problem solvers

cannot possibly recognize problem structure of single problems,  thus the need for use of a wide range of

diverse problems to facilitate the abstraction of specific concepts and transfer of knowledge to various

problem contexts.  He believes that a “deeper engagement of the problem information should lead to better

conceptual  understanding of the problem, and hopefully, result to higher level of abstract thinking about the

problems”(p. 13).  He proposes teaching strategies that promote analogical transfer.  It should be noted that

“many theorists argue that specific experiences are represented in memory as cases that are indexed and

searched so that they can be applied analogically to new problems that occur”(Kolodner, 1991, Riesbeck

and Schank, 1989; Schank, 1990 cited by CTGV, 1997, p.37).  It is therefore the task of mathematics

educators to determine ways of facilitating analogical transfer among learners.
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One such instructional strategy that promotes analogical transfer involves presenting students with

a context problem and then asking them to make their own problem using a different context. The

effectiveness of this strategy according to Bernardo seems to be due to the

deeper level of understanding of the problem structure achieved by the problem solver…[as she]
explores the problem structure while attempting to create an analog, …[and] as a result of correctly
mapping the problem structural information to create a true analog of the original problem.
(Bernardo, 1998, p. 7)

Through this problem posing strategy the learners are able to recognize the essence of a problem and

construct similar problems with the same essence.

Mathematical problem posing, according to Silver (1994, cited by Ban-Har and Kaur, 1999)  “is

the generation of new problems or the re-formulating of existing ones ”(p. 77).  It is recognized as “a

valuable process that is motivating, challenging and allows students to exercise their creativity and

independent learning skills” (Southwell, 1999; Silver, 1994, Kilpatrick, 1987 as cited by Ban-Har and Kaur,

1999).  There are variety of ways to pose problems as a mathematical activity.  These include writing

questions based on given set of facts, on a given calculation, or on certain information.  The benefits of the

activity are the same whichever form is used.  While results of recent studies give no clear correlation

between quality of problem posing responses and problem solving ability (Ban-Har and Kaur, 1999), there

are indications that, when performed in the context of analogical problem construction, analogical transfer

is facilitated (Bernardo, 1998, p. 7).

There are other ways of facilitating recognition of problem structures, one of which is the use of

text editing skills.  In this activity, problem solvers are asked to identify missing information from problems

or point out information that are irrelevant to the problems.  Low and Over (1989) showed the significantly

high correlation between students’ ability to edit the text of algebraic story problems and their ability to

solve these problems; as well as between students’ ability to edit the text and categorize problems as being

similar or different from each other (cited by Putt and Isaacs, 1992, p. 215).  This activity enhances the

problem solvers’ awareness of their own thinking processes.   Such awareness helps learners identify their

points of strengths and weaknesses and regulate their own ways of knowing.

Garofalo and Lester (1985) claimed that “most problem solvers do not develop the appropriate

metacognitive knowledge that should accompany the execution of computational procedures for doing
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problems”(cited by Bernardo, 1997, p. 8).  Wong (1989) and Herrington(1990) showed otherwise in their

studies (cited by English-Halford, 1992).  According to Wong (1989), “most students indicated that they

were conscious of metacognitive processes and used strategies for monitoring and regulating the processes

necessary for problem solving” (cited by English-Halford, 1992, p.118).  Herrington (1990) also observed

that “upper primary school children had well formed views on the process of learning mathematics and were

able to confidently express them”(cited by English-Halford, 1992, p.119).  Inspite of these varying

opinions, Wong and Bernardo both agree about the need to use guided instruction in the use of

metacognitive strategies for problem solving especially among lower ability students.  Bernardo (1997)

echoed Schoenfeld’s suggestion (1987, cited by Bernardo, 1997) that teachers model the metacognitive

processes in problem solving when they present solutions to their students.  A teacher thinks aloud and

exhibits the process of planning, organizing, analyzing and carrying out the solution.  The teacher

articulates questions, makes mistakes, traces and corrects mistakes, deals with incorrect approach,

backtracks, evaluates her progress, and struggles to arrive at the correct solution.  This teaching strategy

demonstrates the complexity of the process involved in solving problems and the reality that there are many

possible ways of arriving at the correct answer.

In the light of all the issues and conflicts on various aspects of problem solving, particularly on

developing cognitive strategies among students, and with the assumption that teachers hold wholesome

beliefs and attitudes towards mathematics teaching, this paper attempts to offer suggestions on effective

ways of fostering critical and analytical thinking through problem solving at different school levels.

FOSTERING CRITICAL AND ANALYTICAL THINKING THROUGH PROBLEM SOLVING

At this point, we all agree that an expert problem solver is a critical and analytical thinker.  When a

learner gains expertise, she has acquired all the qualities of strong and smart thinking.  She becomes

insightful, and logical. The expert is also a constructive learner.  She participates actively in the learning

process and is able to build from her prior knowledge while assimilating and accommodating new

knowledge.  She appreciates the variety of ways of solving mathematical problems and recognizes a good

solution.  She is not afraid to use intuition and logic in her solutions.  She makes good models of the

problems and recognizes the essence and structure of a given problem.  She employs a cognitive schema
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that helps her organize and plan her strategies.  Her metacognitive skills help her monitor and evaluate her

progress.

Expertise can be attained at an early age.  Blais (1988) cites indicators of a schooler’s expertise

once a teacher expresses doubt in her work.  According to Blais,

[I]f the child does not erase, if she or he refuses to accept the hint from an outside authority and
tries to ponder whether the answer is correct, that student is an expert.  Being willing and able to
think and act independently, she or he will decide what is sensible and reasonable based on
informal concepts already acquired (Mills, 1859).  A child accustomed to accepting rules and
procedures on faith has subordinated his or her own reasoning to outside authority and would have
yielded to it once again; the child would have erased. (Blais, 1988, p. 626)

This suggests that teachers should allow their students to experience the joy of working independently by

simply guiding and facilitating their learning and by not doing all the thinking and solving for them.

Let us consider the following strategies:

USE OF PROBLEM TYPE SCHEMATA

Valuable instructional suggestions can be gleaned from the Cognitively Guided Instruction project

at the University of  Wisconsin, Madison.  The successful teachers of CGI have a clear idea of the problem

schemata type of every word problem that they gave their students.  A good example is the following

typology made by Carpenter, Fennema, and Franke (1994, cited by Hankes, 1996):

PROBLEM TYPE ADDITION, SUBTRACTION, MULTIPLICATION AND DIVISION

1. JOIN Connie had 5 marbles.  Jim gave her 8 more marbles.  How many does Connie
have all together?

2. SEPARATE Connie had 13 marbles.  She gave 5 marbles to Jim.  How many marbles does she
have left?

3. PART-PART-
WHOLE

Connie has 5 red marbles and 8 blue marbles.  How many marbles does she have?

4. COMPARE Connie has 13 marbles.  Jim has 5 marbles.  How many more marbles does
Connie have than Jim?

5.MULTIPLICATION Megan has 5 bags of cookies.  There are 3 cookies in each bag.  How many
cookies does Megan have altogether?

6. MEASUREMENT
DIVISION

Megan has 15 cookies.  She puts 3 cookies in each bag.  How many bags can she
fill?

7. PARTITIVE
DIVISION

Megan has 15 cookies.  She put the cookies into 5 bags with the same number of
cookies in each bag.  How many cookies are in each bag.

CGI teachers also know the developmental solution strategies that their students employ when solving a

problem.  An excerpt from the table by Carpenter, Fennema and Hankes (1994), cited by Hankes (1996) is

as follows:
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CHILDREN’S SOLUTION STRATEGIES

Direct Modeling Strategies
Strategy Description

Matching: Megan has 3 stickers.  Randy has
8 stickers.  How many more stickers does
Randy have than Megan?

A set of  3 objects and a set of  8 objects are matched one-
to-one until one set is used up.  The answer is the number of
objects remaining in the unmatched set.

Trial and Error: Deborah had some books.
She went to the library and got 3 more
books.  Now she has 8 books altogether.
How many books did she have to start with?

A set of objects is constructed.  A set of  3 objects is added
to or removed, and the resulting set is counted.  If the final
count is 8, then the number of elements in the initial set is
the answer.  If it is not 8, a different initial set is tried.

Counting Strategies
Strategy Description

Counting down:  There were 8 seals playing.
Three seals swam away.  How many seals
were still playing?

A backward counting sequence is initiated from 8.  The
sequence continues for 3 counts.  The last number in the
counting sequence is the answer.

Counting on to:  Chuck had 3 peanuts.
Clara gave him some more peanuts.  Now
Chuck has 8 peanuts.  How many peanuts
did Clara give to him

A forward counting sequence starts from 3 and continues
until 8 is reached.  The answer is the number of counting
words in the sequence.

Deriving and Fact Recall Strategies
Strategy Description

Deriving:  Six frogs were sitting on lily
pads.  Eight more frogs joined them.  How
many frogs were there then?

The child answers “14” almost immediately and explains, “I
know because 6 and 6 is 12 and 2 more is 14.”

Fact recall:  Eight birds were sitting in a
tree.  Five flew away.  How many are in the
tree now?

The child answers “3” immediately and explains, “ I know
that 8 take away 5 is 3.”

With this knowledge, the CGI teachers are able to give their students the wonderful experience of

inventing solution strategies to word problems and guide them accordingly.  These teachers believe that:

(1)  all children know something about mathematics and that part of the teacher’s role is to attempt
to determine that knowledge base so as to plan instruction;

(2)  focusing on problem solving helps reveal children’s mathematics knowledge;
(3)  encouraging students to invent strategies that make sense to them when solving word problems

and sharing such strategies reveals students’ thinking as well as facilitates learning.
(Hankes, 1996, p. 454-456)

This approach to teaching primary school mathematics paves the way to the development of higher

order thinking skills among pupils and helps them gain expertise at an early age.  The confidence that they

gain in their own ability to handle word problems motivates them to tackle more complex mathematical

problems.  This confidence also drives them to be creative in finding solutions to problems.    

Another strategy that enhances problem type schemata of students is the use of problem posing.

Let us take a look at how several mathematics educators and cognitive scientists employed this strategy

among students.
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USE OF PROBLEM POSING

We have seen the benefits of acquiring problem type schemata in problem solving activities.

Recognition of the structures of the problem leads to the recognition of the essence of the problem  This

promotes reflective abstraction and consequently critical thinking.  Moses, Bjork and Goldenberg (1990)

give the following suggestions on how the experiences of middle school students in problem solving can be

enriched using problem posing:

1.  Have students learn to focus their attention on known, unknown and restrictions of the
problem.  Then consider the following question: What if different things were known and
unknown?  What if the restrictions were changed.

2.  Begin in comfortable mathematical territory.
3.  Encourage students to use ambiguity to create new questions and problems.
4.  Teach the idea of domain from the earliest grades, encouraging children to “ play the same

mathematical game with a different set of pieces.
(Moses, Bjork and Goldenberg, 1990, pp. 83-86)

When given in an atmosphere of collaboration and cooperation, students interact well and

participate actively in the activity.  This way, they are able to monitor their own misconceptions and make

the necessary corrections.  If working in a group or with partners, they learn to listen, evaluate and assess

the work of others, be open to different ideas and  perspectives, and defend their viewpoints in case they

disagree on certain points.

Problem posing can also be applied to students using a variety of mathematical tasks that fit their

interest and capacity.  Various versions of problem posing and problem formulation activities are developed

by mathematics educators, educational psychologists and cognitive scientists.  An activity developed by

Wilson, Fernandez and Hadaway (1993, p. 65) consists of making students list down the attributes of a

given mathematical theorem or rule.  Then the students are asked to generate new problems if some or all of

the given attributes are not true..

The study of Bernardo (1998) used a kind of strategy in problem posing that promotes analogical

transfer among high school students.  They were given four types of basic probability problems.  For each

problem type, four analogous problems were developed.    The students were given instructions on the

solutions of the problems for each problem type.  Students of the experimental group were asked to make

their own problems similar to the one they studied.  Suggestions on objects and events they can use in the

problem were given.  Then, the students were asked to solve the problem.  The study showed that students
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who used the problem construction strategy were better at solving the analogous word problems.   His study

confirms an earlier research which he did in 1994 which showed that “problem solvers retain problem-

specific information in problem-type representations because such information affords access to abstract

structural information about the problems” (p. 392).  His studies clarified the valuable constribution of

problem-specific information in the process of acquiring abstract problem-type representation in the learner.

Ban-Har and Kaur (1999) used a problem posing task requiring students to pose problems based

on a given set of facts.  They established a framework which they called nodal framework for analyzing the

correctness and complexity of the problems formulated.  They found out that students who were unable to

detect contradictions in the information they provided in their problems were consistently unable to solve

non-routine problems.  There was no clear correlation, though, between the ability to pose good problems

and the ability to solve problems.

USE OF INTUITIVE BASED STRATEGIES

Inventiveness in solving problems can be encouraged among novices at the middle school up to the

secondary level.  It is worthwhile to look at how informal explorations that are initially intuitively based can

be used in solving word problems.  Allowing students to use invented solution lets all students work at their

own levels of abstraction and allows for multiple ways to obtain the same answer, fulfilling a goal of the

Standards document (NCTM, 1989, cited by Barb and Quinn).

Consider the examples by Barb and Quinn which allow the use of intuition and modeling in its
solutions.

1.  Jessica’s typing job is worth P8 per page with illustration and P3.50 per page without

illustration.  She typed 49 pages and earned a total of P293.  How many pages of each kind did she

type?

The student can be allowed to use the following reasoning:

 Since the total amount of the typing job is a whole number, then the total number of pages worth

P3.50 has to be even, example 24.  Then there should be more P8 pages, say, 27 and there are 22 P3.50

pages.  This gives the desired amount of P293.

Students may also be allowed to use successive approximations in such problems as the following:
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2.  An executive leaves home on a business trip traveling 50 kph.  One hour later, her husband

finds San important briefcase that she left and starts after her at 70 kph.  Assuming that no one is

stopped for speeding, how long will he take to catch her?

Using the number line, the executive’s trip can be illustrated as follows:

            50km.  100km.  150km.  200km.  250km.

The husband’s trip one hour later can be illustrated in the numberline as follows:

                            70km.        140km.       210km.

Since the husband started one hour later, he could not have caught her on the first hour of her trip.

It should be some time after the executive’s third hour of  trip when she has driven between 150 and 200

km.  The numberlines on this lap of the trip for both the executive and the husband are as follows:

                                      150km.      175km.       200km.

            140km.        175km.         210km.

The husband caught her 175 km. from where they started.

3.  A 40% disenfectant solution is to be mixed with a 20% disinfectant solution to obtain 10 liters

of a 30% solution.  How many liters of the 40% solution and how many liters of the 20%

solution should be used?

Without using algebraic solution, the students can be led to analyze the given problem by asking

such questions as:

Will equal amount of the 40% solution and the 20% solution work in this situation?  Why?

Suppose pure water is to be added to the 40% solution to obtain 20 liters of a 20% soultion, will

equal amoung of the solution and water work?  Why?

These questions may be accompanied by the following diagrams to help students determine the

answers, as presented by Barb and Quinn:



18

5 liters 5 liters       10 liters
            40% solution       20% solution         3/10 = 30% solution 

             10 liters 10 liters                    20 liters
           40% solution         pure water            4/20 = 20% solution

            5 liters                  15 liters                       20 liters
       40% solution            pure water               2/20 = 10% solution

These strategies can be adopted to help students build their skill in problem solving slowly from

their physical experience with the real world.  Their intuition, logic and visual skills are harnessed in the

process.  They are able to build from their prior knowledge their problem solving skills in a way that is

meaningful to them.  In acquiring the intuition for perceiving the essence of a word problem, the

foundations for their higher level mathematical skills are likewise built.  Besides, their ability to symbolize,

represent, generalize and model are enhanced.

USE OF TECHNOLOGY IN MATHEMATICS INSTRUCTION

Mathematics classrooms in many places especially in progressive countries have access to

computing technologies and other peripheral devices.  Classroom equipment includes scientific and graphic

calculators, calculator-based ranger, graph-link, calculator-based laboratory which includes motion detector,

microphone,  sensors and numerous other gadgets, computers,  modems,  printers, scanners, word

processors, internet browser, electronic mail browser, CD-ROM and other interactive computer-based tools,

televisions, video disc players, and all sorts of tools for recording and manipulating information.  A lot of

research has been conducted on the use of computer technology in education.  There is a proliferation of

calculator and/or computer based  instructional materials in mathematics.   Computer-based materials may

come in the form of electronic information that can be retrieved from the World Wide Web or as a software
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designed computer-assisted instruction.  There are sites which are devoted to the resources for teaching

mathematics.  Great attention has been given to computer assisted mathematics instruction, but “little is

known about instructional design issues that affect students’ learning with technology” (Wine & Stockley,

1998, p107).

One research project that developed high quality materials to support learning is the Jasper project

which was conducted by the Cognition & Technology Group at Vanderbilt (CTGV) for 7 years.  The Jasper

series consists of 12 videodisc-based adventures with video-based analogs, extensions and teaching tips for

use in mathematics instruction from the middle school to the higher levels.  The eight features of the Jasper

adventures are as follows:

1.  Help students learn mathematics while solving problems in authentic context.  The use of 
mathematics in authenatic contexts supports students’ reasoning, problem solving, and 
communication skills, all standards identified by the NCTM (1989).
2.  Provide a context that helps students integrate concepts in mathematics as well as 
mathematical knowledge with knowledge of other subjects.
3.  Take advantage of the power of video and interactive technologies.  Video allows a more 
veridical representation of events than text.  It is dynamic, visual, and spatial, and students can 
more easily form rich mental models of the problem situations (e.g., Johnson-Laird, 1985; 
Mc.Namara, Miller & Bransford, 1991; Sharp et al., 1995).
4.  Support Inquiry.  The adventures are designed to help students understand the kinds of 
problems that can be solved through mathematical inquiry.  The adventures also include 
embedded teaching that often takes the form of modeling by experts (Brown, Collins, & Duguid, 
1989).  Modeling can also provide coaching and scaffolding for students as they develop their own
skills (e.g., Vygotsky, 1978, 1986).
5.  Students must generate as well as solve problems.  The adventures end with challenges that 
specify a general goal for the students.  Nevertheless, in order to solve the challenges, students 
must identify a number of subproblems and generate subgoals of their own.
6.  Provide opportunities for collaboration over an extended period of time.  As students work 
together over multiple class periods (from several days to several weeks) to solve a challenge, they
have repeated opportunities to communicate about mathematics, share their ideas about problem 
solving, and receive feedback that helps them refine their thinking.
7.  Afford students the opportunity to develop a deep understanding of mathematical concepts.  
Each videodisc adventure also includes video-based analog and extension problems.  These 
problems help students engage in what-if thinking by revisiting the original adventures from new 
points of view.
8.  Provide positive role models.  A goal of the Jasper series is to provide positive role models for 
students from all backgrounds.

 (CGTV, 1997, pp.3-8)

Several types of studies were conducted to see how the use of the Jasper series affected learning

and transfer of learning.  The formative assessment conducted on problem-based instruction using the

Jasper series showed positive results in terms of increase of students’ learning and problem-solving

performance.  Meaningful learning was evident when the students designed projects that are tailored to the
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local community.  One such project is the creation of a business plan for a fun fair to be held at their school.

Studies showed the importance of the experiences that they gained as they engaged in a collaborative work

on these projects.

The Jasper series is one component of a bigger project which explores ways modern technologies

can be used in mathematics instruction.  This is called the Schools for Thought (SFT) project.  The goal of

this project is to restructure curriculum, instruction, assessment, professional development, and community

participation in ways that help students develop the competencies and confidence necessary for success in

the 21st century (Williams, Burgess, Bray, Bransford, Goldman, & CTGV, 1998, p.97).  SFT also utilizes

technology to provide multiple resources for feedback and revision.  This is called the SMART Challenge

series.  SFT classrooms showed that technologies do support student understanding and provides resources

and scaffolds that promote deep understanding and enhance learning.  Besides, the value of  computer-

mediated communication to establish collaboration among students, teachers and the bigger academic

community was evident in the professional interactions that they had.

A reform effort that is taking place in Union City, New Jersey is the Project Explore, Union City

Online: An Architecture for Networking and Reform.  This project has helped to develop a technical

infrastructure that delivers high speed Internet connectivity to the 11 schools in the district ...[and] was

charged with the development of an effective and sustainable human infrastructure (Honey, Carrigg, &

Hawkins, 1998, p.122).  Participating schools collaborated with the Math Forum project at Swarthmore

College which designed internet-based materials for mathematics classes.  Interactive communication

regarding concerns about mathematics instruction is available in the project’s Web site entitled Linking

Math Proficiencies to Internet Resources.  Union City is also a site for New Jersey’s Systemic Initiative

(SSI) which makes it a model of reform in math, science, and technology.  As such it participates in various

projects like the Woodrow Wilson Scholars-LEgo Robotics Program which “incorporates cooperative

learning, mathematics, science, and technology”(p. 134).

A research project on project-based learning is conducted by EduTech Institute at Georgia Institute

of Technology.  The project focused on making design problems effective learning opportunities by

“reducing costs with minimal time and effort on the part of the teacher, improving learning benefits, and
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creating practical project based learning opportunities for large numbers of students” (Guzdial, 1998, pp.

48-49).  To ensure effective learning,  researchers of EduTech require that “students be given opportunities

to reflect on their learning by focusing goals on knowledge building; and that enough support be provided

to them”(p.48).  One such support for student design activities is a Web-based collaboration tool called the

WebSMILE (Web-Scaffolded Multi-user Integrated Learning Environment).  This is based on the program

of Roland Hübscher where a flowchart developed by Sadhana Puntembakar provides students with the

things they need to do in the problem-solving process.  Similarly,  “GPCreditor (Goal-Plan-Code editor), a

learning environmentfor high school students studying design through Pascal programming, also scaffolds

the planning process and integrates it with the problem-solving process”( p.54).  It claims that high school

students demonstrate expertise in programming after the use of this design support and are able to retain the

skill even when programming in a traditional environment.

Researchers attest to the success of the projects on technology-based mathematical instruction.

Educators recognize the partnership that teachers and students can establish with computing technologies

for effective  mathematics teaching and learning.  The best use of  computing and multi-media technologies

is in the context of support for mathematics instruction.  This has to go with pedagogical principles that are

deeply rooted in sound philosophies of knowledge and education.  At this point, let us look into some

college mathematics programs that used computing and multi-media technologies.

SOME TECHNOLOGY BASED COLLEGE MATHEMATICS PROGRAMS

The Ohio State University, Mathematics, Science, and Technology Education department of the

School of Teaching and Learning conducted a Remedial Mathematics Pilot Program in 1996.   It is

basically a two quarter course in algebra with emphasis on problem solving,  reasoning,  communication,

connections by using multiple representations,  manipulatives,  graphing calculators and any tool that

enables students to learn the concepts for understanding.  Mathematical concepts were oftentimes embedded

in problem situations.  Graphing calculators were made available for students to check out every class

period.  The teacher had an overhead graphing calculator to aid in discussion and presentation.  Students

worked with algebra tiles for combining like terms, multiplication of binomials and factoring until they are

comfortable with the concepts.   Topics include: linear equations and inequalities, graphing, polynomials,



22

perimeter and area, systems of equations, radical expressions, quadratics, and rational expressions.  A one

year progress report of the success of the program was prepared by the faculty advisor, Dr. Patricia Brosnan

and the instructor, Ms. Denise Forrest.  Some of the findings were:

1.  Students’ attitudes towards mathematics improved.
2.  Students became more confident in their knowledge about and self efficacy towards 
mathematics.
3.  Students not only improved their problem solving and reasoning abilities, but enjoyed and 
oftentimes preferred working on word problems.
4.  Because communication was an integral part of the course, students’ ability to articulate their 
mathematics knowledge improved dramatically.
5.  Cooperative learning and small group activities were important for student problem-solving 
success.
6.  Valuing student thinking and teaching by not telling provides the student the opportunity to 
really understand mathematics.
7.  Multiple representations appealed to more learning styles, thus reached more students for 
understanding.
8.  Establishing a caring environment makes an important intangible difference.
(Brosnan & Forrest, 1996 pp. 8 - 10).

Another program that adheres fully to a problem-based and technology-based curriculum in

mathematics is the program designed by Mr. Edward Laughbaum of the Ohio State University Technology

College Short Course Program.  He designed materials which can be used for teaching in context at the

developmental level.  Some of the features of his materials which were recommended in the AMATYC

Standards - Crossroads in Mathematics, and developed as a book are as follows:

1.  Technology is integrated throughout to enhance the learning and teaching of mathematical 
concepts and to provide options for performing mathematical algorithms.
2.  Mathematical concepts are introduced in the context of real-world situations.
3.  There are guided discovery exercises.
4.  There is increased emphasis on the use of function as a central theme.  Learning spirals from an 
intuitive idea of function to formal treatment of the concept requiring higher level thinking.
5.  Numeric, graphic and algebraic methods of representing functions are utilized.
6.  Students are encouraged to explore on their own and use various methods for solving 
problems.
7.  Activities include projects like the extended laboratory projects on modeling; exercises with 
varying levels of difficulty,  and which include open ended questions, concept questions, writing 
questions, and exploration problems.
8.  Students are encouraged to use both the numerical and/or graphical checking of problems.
9.  Group work is encouraged.
Laughbaum (2000)

Topics include numbers,  functions and their graphical representations,  analysis of linear, quadratic,

absolute value and square root functions, operations on polynomial functions, factoring, equations and

inequalities containing the linear expression and the absolute value expression,  formulas, direct variation,
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exponential function, equations and inequalities with exponential expressions, rational functions,

fundamental properties and operations of rational functions,  solving equations and inequalities with rational

expressions, square root function,  irrational expressions and their operations, fractional exponents,

quadratic function, solving quadratic equations, geometry, trigonometry, systems of equations and

inequalities, and logarithmic function.  There is mathematical modeling of linear functions, exponential

functions, square root functions, quadratic functions, trigonometric functions, logarithmic functions and

systems of equations.

Professors Bert Waits and Frank Demana, founders of the Technology College Short Course

Program of the Ohio State University prepared a set of activities using the computer algebra calculator and

other calculator based gadgets.  Their compilation of activities is entitled Mathematically Modeling Science

M2 S,  Enhancing the Teaching and Learning of Mathematics & Physics with Hand-Held Technology.  It

consists of activities that integrate mathematics and the physical sciences aimed at enhancing

comprehension of mathematical and scientific concepts.  The activities use various Texas Instruments

equipment.

The special feature of the abovementioned programs is the use of problem solving to build on the

mathematics concepts and motivate the learners to engage in the mathematical task. They share the belief

that  meaningful learning in mathematics takes place in a problem-based curriculum.  It is however

important to use technology to help in the learning and teaching processes.  Consequently,  the activities use

graphing calculators heavily.

From the various issues and ways of negotiating the issues that have been discussed, an attempt is

made to draw conclusions regarding what a good technology-based curriculum should be for college

algebra.

A TECHNOLOGY BASED CURRICULUM IN COLLEGE ALGEBRA

Problem solving is seen as the manipulation of an internal mental model of the external world.  In

the process of finding the solution, “we solve the problem in the internal representation and then project its

solution into the thing being represented”(Hunt, 1994, p. 218 ).  The solution is brought  about by the

manipulation of the representation by a human and/or an electronic thinking device.  Learners construct a
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mental model of the situation in their memory.  The learner’s symbolic represemtation and manipulation is a

limiting feature of human problem solving, though.  Newell and Simon (1961,1972) proposed that computer

programs can be gleaned as models of human thought and then offered the following insights:

1.  A theory of the process of problem solving can be expressed as a program, that is a set of rules 
for manipulating symbols.  Indeed, if a theory is proposed that cannot be so expressed, that theory 
is unacceptably vague.
2.  The development of an ideal problem-solving program in some field of endeavor is a goal in 
Artificial Intelligence.
3.  A problem- solving program that, in some nontrivial sense, behaves like a human being, is a 
descriptive theory of human problem solving.
(cited by Hunt, p. 218)

It becomes clear that technology is an efficient partner of humans in problem solving.  Since the

success in problem solving is determined by the learner’s capacity to represent an external situation into

symbols and manipulate these representations, then they have to make use of some cognitive tools in the

process.

Cognitive scientists believe that learners usually memorize a variety of schemata in order to cope

with the problem solving task.  This is where the partnership between technology and humans becomes

essential.  Hunt (1994) believes that “ as along as the students have pattern-recognition rules that tells them

when to apply which of their many contradictory schemata” then the problem solving skill has been

acquired.  They need not have an orderly progression of schemata like what computer programs have.

More important than the procedures and algorithms is the meaningful understanding of the concepts applied

in problem solving.  That way, “[s]chemata problem solving works because it moves the computational

burden from immediate memory, where the human problem solver is weak, to long-term memory, where the

problem solver is strong”  (Hunt, 1994, p.231).  Since problem solving requires higher level cognitive skill,

any mathematics course becomes meaningful if embdded with problem solving tasks.

This paper adheres to a problem-based curriculum in college algebra which provides opportunities

for problem solving and mathematical investigations founded on a constructivist theory of learning.  It

advocates activities that foster critical and analytical thinking in an environment of human support from the

teacher,  and fellow students, as well as technological support that are available in school.

Problem based curriculum promotes learning with understanding in the first course of college

algebra.  Word problems can be used to build the mathematical concepts to be discussed.  At other times,
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word problems can also be used as applications of concepts that were introduced.  If formulated in the real

world context, these word problems can be motivating since the learners see how different mathematical

concepts can be used in daily transactions.  Modern technology lightens the algorithmic burden of the

mathematical task, and  eases the cognitive load by helping the learner acquire a problem schema. Even at

the college level,  computing and information technology are important aids to learning.

Effort should be exerted though to find and/or design good instructional materials for the desired

learning outcomes.  These materials should take into consideration the technology that are available to the

students, be it the modern or the traditional technology of pencil, paper, chalk and board.   Well designed

activities help build a mathematical community within the classroom made up of the teacher and the

students that support each other.  If communications technology is available in class, this mathematical

community can extend to other mathematics teachers in school or outside, other students engaged in

mathematical activities,  mathematicians and the community of people from whom information can be

gathered on some mathematical projects.  Students can be allowed to engage in community-wide

converstations about certain mathematical tasks or projects.  On the other hand, teachers can build a

network among other professionals to design a curriculum for their algebra students.  This way, the

community can contribute their insights into the curriculum which they think are powerful and relevant to

the demands of society.

This paper does not advocate specific topics and activities.  Instead, teachers are encouraged to

look into the projects specifically funded by such agencies as the National Science Foundation or research

findings from experiences in mathematics instruction such as that of the Ohio State University.  The

classroom teacher is the ultimate curriculum designer.  She is at the center of all the decisions about

revisions and implementation of the curriculum  She is the reliable resource of information about pedagogy,

administrative decisions on classroom needs, techonological designs of instructional materials, school

reform and restructuring.

The framework of the techno-mathematics curriculum design for algebra at the collegiate level thus

recommended is as follows:
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FRAMEWORK OF THE TECHNO-MATHEMATICS CURRICULUM DESIGN FOR COLLEGE ALGEBRA
Learning Theory Features of

Problem-based College
Algebra

Pedagogical Implications

Building on the
learner’s prior
knowledge

Probing questions to map
learner’s concept
Single goal problem types
Real world problems

The teacher facilitates learning by linking prior
knowledge to the new mathematical concepts through
inquiry.  She selects tasks that incorporate previously
learned concepts and enable new mathematical
understanding to grow.  The teacher encourages the
students to communicate their ideas.

Active construction
of learning
Multiple
representation
Situated learning
Strategic thinking

Goal free word problems
Building mathematical skills
Mathematical explorations and
investigation
Generalization of patterns and
constraints
A body of formal symbols
Study of structures
Study of functions and relations
Mathematical modeling

The teacher lays down the objectives and expected
outcomes of the mathematical tasks.  She selects
activities from various sources that facilitate
understanding and meaningful learning.  She supports
the student’s investigative processes.  She allows
students to use intuition and logic aside from their
algebraic skills in solving problems.  She also
encourages learners to use various strategies including
guessing and estimation with the goal of helping them
gain expertise in the process.  She finds ways to make
all forms of algebraic reasoning available to students
and help them gain meaningful learning.  She gives
them opportunities to reflect on their thinking and
reorganize their learning.

Mathematical
Community of
Learners
Collaboration
Social context
Negotiated meaning
Distributed expertise

Cooperative learning
Environment of mutual support
Established norms
Sustained focus
Student accountability for
learning

The teacher establishes an environment that is
conducive to collaboration and mutual support, as well
as class norms that encourage learning with
understanding.  The teacher is able to encourage student
autonomy and accountability for their learning.  They
articulate their mathematical thinking,  views and
insights and critique each other’s work.  At the same
time they demonstrate respect for each other’s
capabilities and help each other gain the desired
expertise.

Cognitive tools
including human and
technological
support

Traditional and/or modern
technology
Problem schema
Analogic transfer
Feedback and assessment

The teacher should gain the skill to use the appropriate
technology that is available in school.  This technology
should be used to help students gain problem schema in
problem solving.  The teacher should be able to help
students use the available technology.  The teacher
presents concepts in variable problem context to
promote abstraction.  She uses various ways to promote
analogic transfer.  She focuses on the learning processes
and unique thinking of each learner and provides
feedback efficiently.  She ensures that all students learn
mathematics with understanding.

One powerful tool used in mathematics classes is the graphing calculator.  Certain concepts can

easily be built empirically by encoding data in the calculator and observing the resulting mathematical

model.   Nevertheless, Waits and Demana (1998a) believe that paper-and-pencil computation can help

learners validate technology.  In the absence of modern technology and with the use of the tradional
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technology of chalk, board, pencil and paper,  the desired curriculum for college algebra can still be

attained.

CONCLUSION

Mathematics educators recognize the need to develop critical and analytical thinking through

problem solving.  This paper presented the various issues about problem solving that have been raised in the

last two decades.  Upon analyzing all arguments, this paper embraced the belief that establishing a cognitive

schema in problem solving will lessen the heavy cognitive load of the problem solving task.  Then this

paper suggested ways to establish problem type schema among the students at different levels.  In teaching

problem solving at the elementary level, certain practices of the Cognitively Guided Instruction project may

be employed.  This includes awareness of  problem schemata typology that teachers employ in class and

knowledge of  developmental solution strategies in assessing learner’s solutions to problems.  Another

activity that enhances schema recognition is the problem posing task.  The problem posing tasks are varied

and have been proven to promote analogic transfer among the learners.

The paper pointed out the importance of gaining ample knowledge in problem solving for critical

thinking to take place in that particular setting.  The paper showed how alternative solutions to problems

can be encouraged using logic, reasoning, approximation, estimation and visual representations.  These

alternative solutions allow novices to harness their intuition to gain the expertise needed in problem solving.

This way, they can take active part in building knowledge and gain expertise in the process.

The role of technology as a cognitive tool and partner in mathematics instruction was recognized.

Some research-based projects on the use of technology in mathematics instructions were cited.  Some

programs on problem-based mathematics courses at the Ohio State University were also cited.  These

programs affirmed the benefits of the use of modern technology in promoting meaningful learning.

A framework of a problem based curriculum for college algebra was recommended.  While it is

believed that computing and information technologies facilitate learning in a mathematics course, the use of

modern technology is not vital in the proposed curriculum.  Instead, it emphasizes the learning theories and

pedagogical aspects of the curriculum, based on the constructivist theory of active building of knowledge

that promotes learning with understanding.



28

REFERENCES

Ban-Har, Y. and Kaur, B.  Problem Posing: An Exploratory Investigation. In Ogena, E. B. and Golla, E. F.
(eds.)  8th Southeast Asian Conference on Mathematics Education: Technical Papers. Quezon City:
Ateneo de Manila University, (1999).

Barb, C. and Quin, A. L.  Problem Solving Does Not Have to Be a Problem.  The Mathematics Teacher.
90-7. 536-541, (1997).

Beane, J.A. (ed.)  Toward a Coherent Curriculum.  Virginia: Association for Supervision and Curriculum
Development, (1995).

Bernardo, A. B. I.  Problem-Specific Information and the Development of Problem-Type Schemata.
Journal of Experimental Psychology: Learning, Memory and Cognition., 379-395, (1994).

Bernardo, A.B. I.  The Psychology of Mathematical Learning and Problem Solving: Implications for
Mathematics Education.  PROCEEDINGS MATHTED’97 CONFERENCE.  Manila: De La Salle
University, (1997).

Bernardo, A.B.I.  Analogical Problem Construction: A Study on an Instructional Intervention for
Improving Analogical Transfer in Word Problems. Paper presented during the 5th DLSU Mathematics
Lecture Series. (1998).

Bishop, A. J.  Democratizing Mathematics through Education in the 21st Century-Lessons from Research.
In Ogena, E. B. and Golla, E. F. (eds.)  8th Southeast Asian Conference on Mathematics Education:
Technical Papers. Quezon City: Ateneo de Manila University, (1999).

Brosnan, P. A., & Forrest, D. Remedial Mathematics Pilot Program: A Mathematics and Mathematics
Education Collaborative.  The Ohio State University, (1996).

English-Halford, L.D.  Cognitive Studies in Mathematics Education.  In Atweh, B. and Watson, J. (eds.)
Research in Mathematics Education in Australasia 1998-1991. Queensland: Centre for Mathematics
and Science Education, University of Technology. (1992).

Fennema, E., and Romberg, T. A.(eds.)  Mathematics Classrooms that Promote Understanding. New
Jersey: Lawrence Erlbaum Associates, Publishers (1999).

Guzdial, M. Technological Support for Project-Based Learning. In Dede, C. (ed.),. ASCD Yearbook 1998
Learning with Technology. Virginia, Association for Supervision and Curriculum Development, (1998).

Hankes, J.  An Alternative to Basic Skills Remediation. Teaching Children Mathematics. 2-8, 452-457
(1996).

Keane, M. T. Analogical Problem Solving. New York: John Wiley & Sons, (1988).

Krajcik, J. Soloway, E. Blumenfeld, P. and Marx, R.  Scaffolded Technology Tools to Promote Teaching
and Learning in Science. In Dede, C. (ed.),. ASCD Yearbook 1998 Learning with Technology. Virginia,
Association for Supervision and Curriculum Development, (1998).

Honey, M., Carrigg, F. and Hawkins, J. Union City Online: An Architecture for Networking and Reform. In
Dede, C. (ed.),. ASCD Yearbook 1998 Learning with Technology. Virginia, Association for Supervision
and Curriculum Development, (1998).



29

Hunt, E.  Problem Solving.  In Sternberg, R.J. (ed.) Thinking and Problem Solving. San Diego: Academic
Press, (1994).

Laughbaum, E.D. Teaching in Context. The Ohio State University, (1999).

Laughbaum, E. D. Foundations for College Mathematics. Ohio: Red Bank Publishing, (2000).

Leebaert, D. Technology 2001 The Future of Computing and Communications.  Massachusetts:  The
Massachusetts Institute of Technology Press, (1991).

Moses, B., Bjork E., and Goldenberg, E. P.  Beyond Problem Solving: Problem Posing.  In Cooney, T. J.
and Hirsch, C. R. (eds.). Teaching and Learning Mathematics in the 1990s.  Virginia: National Council
of Teachers of Mathematics. 82-91.

National Council of Teachers of Mathematics.  Professional Standards for Teaching Mathematics.
Virginia, (1991).

O’Daffer, P. G. and Thornquist, B. A.  Critical Thinking, Mathematical Reasoning, and Proof.  In Wilson,
P. S. (ed.). Research Ideas for the Classroom High School Mathematics.  New York: Mac Millan
Publishing, (1993).

Putt, I., and Isaacs, I.  Research in Mathematical Problem Solving. In Atweh, B. and Watson, J. (eds.)
Research in Mathematics Education in Australasia 1998-1991. Queensland: Centre for Mathematics
and Science Education, University of Technology,  (1992).

Rivera, F. D., and Nebres, B. F.  A Critical Analysis of the Recently Concluded National Science and
Education Congress (1998): Next Steps. Ateneo de Manila University,  (1998).

Schoenfeld, A. H.  Mathematical Thinking and Problem Solving.  New Jersey: Lawrence Erlbaum
Associates, Publishers, (1994).

Smith, D., Knudsvig, G., and Walter, T.  Critical Thinking, Building the Basics.  Belmont: Wadsworth
Publishing Company (1998).

Southwell, B.  Whither Constructivism, Problem Solving, and Mathematical Investigations: Will They
Survive the Turn of the Century. In Ogena, E. B. and Golla, E. F. (eds.)  8th Southeast Asian Conference
on Mathematics Education: Technical Papers. Quezon City: Ateneo de Manila University, (1999).

The Cognition & Technology Group at Vanderbilt.  The Jasper Project: Lessons in Curriculum,
Instruction, Assessment, and Professional Development. New Jersey: Lawrence Erlbaum Associates
Publisher, (1997).

Trott, A.J., Winterburn, R., and Evans, L. (eds.)  Aspects of Educational Technology Volume XIV
Educational Technology to the Year 2000.  London: Kogan Page, (1980).

Whimbey, A. and Lochhead, J.  Problem Solving and Comprehension.  A Short Course in Analytical
Reasoning.  2nd ed.  Philadelphia: The Franklin Institute Press (1980).

Williams, S.M., Burgess, K.L., Bray, M.H., Bransford, J.D., Goldman, S.R., and CTGV.  Technology and
Learning in Schools for Thought Classrooms. In Dede, C. (ed.),. ASCD Yearbook 1998 Learning with
Technology. Virginia, Association for Supervision and Curriculum Development, (1998).



30

Wilson, J. W., Fernandez, M. L. and Hadaway, N.  Mathematical Problem Solving.  In Wilson, P. S. (ed.).
Research Ideas for the Classroom High School Mathematics.  New York: Mac Millan Publishing,
(1993).

Wine, P.H., and Stockley, D. B.  Computing Technologies as Sites for Developing Self-Regulated
Learning.  In Schunk, D.H., and Zimmerman, B.J. (eds.) Self-Regulated Learning from Teaching to Self-
Reflective Practice.  New York: The Guilford Press, (1998).

Witt, P. W. F.  Technology and the Curriculum.  Columbia University: Teachers College Press,  (1968).


