
CORDIC: Elementary Function Computation
Using Recursive Sequences

Neil Eklund

Many of us who teach calculus and mathematical topics that use calculus have
taken for granted that hand-held calculators use Taylor series or a variant to compute
transcendental functions. Thus, it was a surprise to learn that this was not the case. The
CORDIC method (Coordinate Rotation Digital Computer) was developed by Jack Volder
[6] in the late 1950’s. Hewlett-Packard was quick to realize the usefulness of this
method; it required only the most efficient processes to compute values of the standard
transcendental functions.

It should be noted at the outset that, while this presentation presumes base two
arithmetic, calculators use base ten arithmetic with specially designed chips that use
binary coded decimal (BCD) arithmetic. This was done to reduce the need for limited
storage in the early years. While storage is no longer a problem, the algorithms are very
efficient and adequate for calculator use.

Many of the papers on CORDIC that I have located were written for an
engineering audience. These include the original paper by Volder and, subsequently,
papers by Linhardt and Miller [1], Walther [7], and Schmid and Bogacki [4]. Two
sources of information on CORDIC for a mathematics audience are articles by Schelin
[3] and the COMAP article by Pulskamp and Delaney [2].

What is CORDIC?
Define a sequence of triplets { (xk,yk,zk) } recursively for k ≥ 0 by

(1)








−=
+=

−=

+

−
+

−
+

.

,2

,2

1

1

1

kkkk

k
kkkk

k
kkkk

zz

xyy

ymxx

εδ
δ
δ

The εk, the initial point (x0,y0,zo), and m determine the function and the point where that
function is to be computed. The δk (= ± 1) are chosen during iteration so that we always
approach the desired value. In particular, m = 0, +1, or -1 with m = 0 to obtain a product
or quotient, m = 1 to obtain sin(θ), cos(θ), or tan-1(u), and m = -1 to obtain sinh(u),
cosh(u), eu, tanh-1(u), √u, and ln(u); I have used u here so as to avoid confusion with the
variables in the recursion process. The specifics are shown in table 1.

Rotation (zk→0) Vectoring (yk→0)





<−
≥

=
01

01

k

k
k z

z
δ





≥−
<

=
01

01

k

k
k y

y
δ

m = 0 x0, z0 given, y0 = 0 x0, y0 given, z0 = 0
εk = 2-k implies implies
k ≥ 0 yn+1 ≈ x0z0 zn+1 ≈ y0/x0

m = 1 x0 = K, y0 = 0, z0 = θ x0, y0 given, z0 = 0
εk = tan-12-k implies implies
k ≥ 0 xn+1 ≈ cos θ zn+1 ≈ tan-1(y0/x0)

∏
=

=
n

k
kK

0

cosε yn+1 ≈ sin θ xn+1 ≈ (x0
2 + y0

2)1/2/K

m = -1 x1 = K’, y1 = 0, z1 = θ y1 < x1 given, z1 = 0
εk = tanh-12-k implies implies
k ≥ 1 xn+1 ≈ cosh θ zn+1 ≈ tanh-1(y1/x1)

∏
=

=
n

k
kCK

1

’ yn+1 ≈ sinh θ xn+1 ≈ (x1
2 - y1

2)1/2/K’

C1 = cosh ε1 xn+1 + yn+1 ≈ eθ

Ck = cosh2εk

x1 = w +1, y1 = w - 1, z1 = 0
 implies
zn+1 ≈ ½ ln w

x1 = w + ¼, y1 = w - ¼,
z1 = 0

 implies
xn+1 ≈ w1/2/K’

Table 1 CORDIC Scheme

The mathematical rigor needed to justify convergence of each of these sequences
to their desired value was alluded to by Volder; however, Walther was the first one to
prove the following theorem. I found the proof in Schelin’s article easier to follow than
Walther’s.

Theorem: Suppose ε0 ≥ ε1 ≥ ε2 ≥ … ≥ εn > 0 is a finite sequence of real numbers such
that

(2) ∑
+=

+≤
n

kj
jnk

1

εεε , 0 ≤ k ≤ n,

and suppose r is a real number such that

(3) ∑
=

≤
n

j
jr

0

ε .

If s0 = 0 and sk+1 = sk + δkεk for 0 ≤ k ≤ n where





<−
≥

=
k

k
k sr

sr

1

1
δ ,

then

∑
=

+≤−
n

kj
jnksr εε , 0 ≤ k ≤ n,

and, in particular,

nnsr ε≤− +1 .

The CORDIC scheme appears to have been developed to compute the sine and
cosine function values. However, since the cases m = 0 and m = 1 have been discussed at
these meetings by Prof. Bruce Edwards of the University of Florida, this presentation will
focus on the m = -1 case. We must show that the inequality (2) is satisfied, indicate the
relevance of the inequality (3), and show that the sequence does converge to the desired
values.

m = -1

Let 





−
+== −

−
−−

k

k
k

k 21

21
ln

2

1
2tanh 1ε for k ≥ 1. The inequality (2) is not satisfied;

specifically, if k = n-1, it can be shown that εn-1 > εn + εn = 2 εn but εn-1 ≤ εn + 2εn = 3 εn.
That is, the inequality (2) is satisfied for k = n-1 if the εn in the sum is repeated. Walther
points out that certain steps in the iteration (1), and hence the corresponding εk, must be
repeated. I found that the steps that needed repeating depended upon the choice of n. For
example, if n = 13 then k=13 and k=4 need to be repeated whereas if n = 14 then k = 14,
k = 5, and k = 2 need to be repeated in order to satisfy inequality (2).

We can get around the issue of which εk should be repeated by repeating all of
them for k ≥ 2. The proof of this is quite simple; mathematical induction is used. Let Sk

be the statement

(5) Sk: ∑
−+=

− +≤
n

knj
jnkn

1

2 εεε is true for k = 1, 2, …, n-1.

If k = 1, then we want to show that εn-1 ≤ εn + 2εn = 3 εn. This is equivalent to



















+
−







−
+=−≤ −

−

−

−

− 1

13

1 21

21

21

21
ln

2

1
30

n

n

n

n

nn εε

which is equivalent to
(1+2-n)3(1-2n-1) ≥ (1-2-n)3(1+2n-1).

It is a simple exercise to show that this is true. Now assume Sk is true. We want to show
that Sk+1 is true. Replacing k with k+1 in (5) and taking all terms to the right side of the
inequality to be shown, we have

{ }1
1

1 322

?

0 −−−−
−+=

−−
−=

−+








−+=−+≤ ∑∑ knknkn

n

knj
jnkn

n

knj
jn εεεεεεεε .

The first term on the right is nonnegative by the induction hypothesis. The second term
on the right can be shown to be nonnegative by repeating the steps performed in the S1

case. Thus, Sk is true for all k = 1, 2, …, n-1.

The pictures I have seen describing the process for the m = -1 case did not help
my understanding of the process. The
picture at the right is similar to that found
in the paper by Schmid and Bogacki.

The CORDIC scheme in the m = -1 case
has recursion equations

(6)








−=
+=
+=

+

−
+

−
+

,

,2

,2

1

1

1

kkkk

k
kkkk

k
kkkk

zz

xyy

yxx

εδ
δ
δ

for k ≥ 1 where εk = tanh-12-k.

Since k

k

k
k

−== 2
cosh

sinh
tanh

ε
εε

the hyperbolic identity 1 = cosh2x - sinh2x implies that
(7) cosh εk = (1 - 2-2k)-1/2, sinh εk = 2-k (1 - 2-2k)-1/2.

Let θk = θ1 + z1 - zk where θ1 is to be determined. Then
(8) θk+1 = θk + δkεk

for each iteration of the scheme (6). Define Rk and θk so that xk = Rkcosh(θk) and
yk = Rksinh(θk). It follows from the CORDIC scheme and (8) that
(9) Rk+1 = (1 - 2-2k)1/2Rk = Rk/cosh εk, k ≥ 1,
for each iteration of (6) where R1 is yet to be chosen depending on the function to be
evaluated. Thus, θ1 is chosen so that

x1 = R1cosh(θ1), y1 = R1sinh(θ1).
It is left as an exercise for the student to show that (7), (8), and (9) imply that the
CORDIC scheme is satisfied.

We have already noted that (6) will be iterated twice for all k ≥ 2 and, therefore,
(9) implies that

1
2

22/12
1)21()21(RR

k

j

j
k









−−= ∏
=

−−
+

Since we repeat iterations for k ≥ 2 let us denote the first iteration with primes; that is,
x’ k+1 = xk + δ’ k2

-kyk = Rk+1cosh(θ’ k+1),
y’ k+1 = yk + δ’ k2

-kxk = Rk+1sinh(θ’ k+1),
z’k+1 = zk - δ’ kεk.

The second iteration is given by
xk+1 = x’k+1 + δk2

-ky’ k+1 = Rk+1cosh(θk+1),
yk+1 = y’k+1 + δk2

-kx’ k+1 = Rk+1sinh(θk+1),
zk+1 = z’k+1 - δkεk.

Consider the rotation mode. Since y1 = 0 it follows that θ1 = 0 and x1 = R1. Thus,
the rotation mode assumes

’)21()21(1

2

22/12
11 KRx

n

j

j =−−== −

=

−−− ∏ ,

y1 = 0,
z1 = θ,
zn+1 ≈ 0.

Then θn+1 ≈ θ, Rn+1 = 1, and
xn+1 ≈ cosh(θ), yn+1 ≈ sinh(θ),

and, therefore,
xn+1 + yn+1 ≈ eθ.

For what values of θ is CORDIC directly applicable and how does one get around
this constraint? Since zn+1 ≈ 0, z1 = θ, and zn+1 = z1 - δ1ε1 - Σ(δj + δ’ j)εj, we must have
θ ≤ ε1 + 2Σεj. But ε1 + 2ε2 > 1.0. Therefore, convergence is guaranteed for θ ≤ 1.0.
For arbitrary θ we repeatedly add or subtract ln(2) to get θ’ = θ - p ln(2) where
θ’ ≤ 1.0. CORDIC is then applied to get

cosh θ’ ≈ xn+1 and sinh θ’ ≈ yn+1.
It follows from hyperbolic function identities that

cosh θ ≈ ½ (xn+1 + yn+1)2
p + ½ (xn+1 - yn+1)2

-p

and
sinh θ ≈ ½ (yn+1 + xn+1) 2

p + ½ (yn+1 - xn+1)2
-p.

Now consider the vectoring mode. Since
x1 and y1 are given with x1 > y1,
z1 = 0, and

yn+1 ≈ 0,
it follows that θn+1 ≈ 0 and, hence, zn+1 ≈ z1 + θ1 = θ1. Therefore, y1/x1 = tanh(θ1) and

zn+1 ≈ tanh-1(y1/x1).
Moreover, since Rn+1 = R1/K’ in the general case,

xn+1 = Rn+1cosh(θn+1) ≈ Rn+1 = (x1
2 - y1

2)1/2/K’.

There are two extensions of the vectoring mode. Since








−
+=−

t

t
t

1

1
ln

2

1
tanh 1

we set t = y1/x1 with x1 = w + 1 and y1 = w - 1 to get
zn+1 ≈ ½ ln(w).

Moreover, if x1 = w + ¼ and y1 = w - ¼, then
xn+1 ≈ w1/2/K’.

For what x1 and y1 can CORDIC be applied directly in the vectoring mode? Since
z1 = 0 implies zn+1 ≤ θ1 + ε1 + 2Σεj and since ε1 + 2ε2 > 1.0 and zn+1 ≈ tanh-1(y1/x1), we
require that  tanh-1(y1/x1) ≤ 1.0. This is satisfied provided  y1/x1  ≤ ¾ . Since,
however, the domain of tanh-1x is x < 1, we must deal with ¾ < y1/x1 < 1. Lastly,
since tanh-1x is an odd function, we shall assume ¾ < y1/x1 < 1.

Walther points out in his paper that

(10) () ())2ln(
2

tanh21tanh 11 E
TME +=− −−−

where

MM

MM
T

E

E

−

−

−+
−−=

22

22
, 0.5 ≤ M < 1, and E ≥ 1 integer.

Thus, if ¾ ≤ y1/x1 = 1 - 2-E M< 1, then 0 < 2-E M≤ ¼ . The constraint 0.5 ≤ M < 1 then
implies

5

3

2

2

47

47

11

3 ≤
+
−≤≤

+
−≤

M

M
T

M

M
.

Therefore, if ¾ ≤ y1/x1 < 1 then we can choose 2-E M= 1 - y1/x1; that is, we obtain M be
repeatedly multiplying 1 - y1/x1 by 2 until we get

0.5 ≤ 2E (1 - y1/x1) ≡ M < 1.
To compute tanh-1T we use the given x1 and y1 to compute new values

x1 ← 1 + M + y1/x1, y1 ← 1 - M + y1/x1

or
x1 ← x1 + y1 + Mx1, y1 ← x1 + y1 - Mx1

which are now used in the CORDIC scheme. Then (10) is used to obtain tanh-1(y1/x1).

Since ’/2
1

2
11 Kyxxn −≈+ is playing the role of r in the theorem and since K’ is

approximately 1.25, the x1 and y1 must satisfy 25.1’2
1

2
1 <≤− Kyx , we force the

x1
2 - y1

2 ≤ 1 to apply CORDIC. If this condition is not satisfied, we repeatedly divide
both x1 and y1 by 2 until their new values satisfy this condition. The desired value is
obtained by multiplying the CORDIC solution by that power of 2.

References

[1] R.J.Linhardt and H.S.Miller, Digit-by-Digit Transcendental-Function
Computation, RCA Rev. 30 (1969), 209-247.

[2] R.J.Pulskamp and J.A.Delaney, Computer and Calculator Computation of
Elementary Functions, UMAP Journal 12 (1991), 317-348.

[3] C.W.Schelin, Calculator Function Approximation, Am.Math.Monthly, 90 (1983),
317-325.

[4] H.Schmid and A.Bogacki, Use Decimal CORDIC for Generation of Many
Transcendental Functions, EDN, Rogers Pub. Co., Englewood, CO,(1973), 64-73.

[5] E.E.Swartzlander, Computer Arithmetic, Stroudsburg, PA, Dowden, Hutchinson
& Ross, 1980.
This is a collection of papers including those of Volder and Walther.

[6] J.Volder, The CORDIC Computing Technique, IRE Trans. Computers, v. EC-8
(September 1959), 330-334.

[7] J.Walther, A Unified Algorithm for Elementary Functions, Joint Computer
Conference Proceedings, v.38, Spring 1971, 379-385.

