CORDIC: Elementary Function Computation
Using Recursive Sequences

Neil Eklund

Many of us who teach calculus and mathematical topics that use calculus have
taken for granted that hand-held calculators use Taylor series or avariant to compute
transcendental functions. Thus, it was a surprise to learn that this was not the case. The
CORDIC method (Coordinate Rotation Digital Computer) was developed by Jack Volder
[6] in the late 1950’s. Hewlett-Packard was quick to realize the usefulness of this
method; it required only the most efficient processes to compute values of the standard
transcendental functions.

It should be noted at the outset that, while this presentation presumes base two
arithmetic, calculators use base ten arithmetic with specially designed chips that use
binary coded decimal (BCD) arithmetic. This was done to reduce the need for limited
storage in the early years. While storage is no longer a problem, the algorithms are very
efficient and adequate for calculator use.

Many of the papers on CORDIC that | have located were written for an
engineering audience. These include the original paper by Volder and, subsequently,
papers by Linhardt and Miller [1], Walther [7], and Schmid and Bogacki [4]. Two
sources of information on CORDIC for a mathematics audience are articles by Schelin
[3] and the COMARP article by Pulskamp and Delaney [2].

What is CORDIC?
Define a sequence of triplets {k(%.z«) } recursively for k= 0 by
Koy = X —ME, Y, 27,
1) Eyk+1 =Yy T O X, 27,
E 21 = Z ~ O\ &,

Thegy, the initial point (%,Yo0,20), and m determine the function and the point where that
function is to be computed. Thg( == 1) are chosen during iteration so that we always
approach the desired value. In particular, m =0, +1, or -1 with m = 0 to obtain a product
or quotient, m = 1 to obtain sB){ cos@), or tan'(u), and m = -1 to obtain sinh(u),

cosh(u), & tanh'(u), Vu, and In(u); | have used u here so as to avoid confusion with the
variables in the recursion process. The specifics are shown in table 1.



Rotation (zx - 0) Vectoring (yx — 0)

01 z =0 01 <0
5. =0 K 5. =0 Yi
m1l z <0 Tl vy, =20
m=0 Xo, Zo given, yo= 0 Xo, Yo given, zo=0
g =2% implies implies
k>0 Yn+1 = XoZo Znv1 = Yo/Xo
m=1 X0=K,y0=0,20=9 Xo, Yo given, zo=0
g = tan'2* implies implies
k=0 Xn+1 = COS O Zn1 = tan ™ (Yo/Xo)
K = I:l COSE, Yne1 = SiNO Xns1 = (X0 + Yo?)YAIK
m=-1 x1=K,y1=0,2=0 y1 <X given,2=0
& = tanh'2* implies implies
k=1 Xn+1 = COShO Zne1 = tanbi'(ya/xq)
K’'= H Ck Y1 = sinh@ Xn+1 = (X12 - y12)112/K1
C, = coshey Xnt1 T Yne1 = e
Cy = coshe,
X1=w+l,y=w-1,2=0
implies
Zo1=Y2 Inw
X1 =W+ Y,y =W -Ya,
z1=0
implies
Xne1 = WK’

Tablel CORDIC Scheme



The mathematical rigor needed to justify convergence of each of these sequences
to their desired value was alluded to by Volder; however, Walther was the first oneto
prove the following theorem. | found the proof in Schelin’s article easier to follow than
Walther's.

Theorem: Supposep=¢€;=¢€,> ... =€, > 0is a finite sequence of real numbers such
that

n
) £ <€, + Ze‘j, O<ksn,
j=k+1
and suppose r is a real number such that

(3) Ir|< Zfsj .

If S =0 and g1 = s + &g for 0< k< n where
01 rz=s
5[( :D ]
1 r<s
then

n

|r—sK|s£n+Z£j, 0<k<n,
£

and, in particular,
r=s..|<e,.

The CORDIC scheme appears to have been developed to compute the sine and
cosine function values. However, since the cases m = 0 and m = 1 have been discussed at
these meetings by Prof. Bruce Edwards of the University of Florida, this presentation will
focus on the m = -1 case. We must show that the inequality (2) is satisfied, indicate the
relevance of the inequality (3), and show that the sequence does converge to the desired
values.

m=-1

+ 0k
Let £ =tanh™ 27 :%m%ﬁfm k= 1. The inequality (2) is not satisfied,

specifically, if k = n-1, it can be shown that, > ¢, + €, = 2¢, butgn; < €, + 2, = 3¢,
That is, the inequality (2) is satisfied for k = n-1 if then the sum is repeated. Walther
points out that certain steps in the iteration (1), and hence the correspandmigt be
repeated. | found that the steps that needed repeating depended upon the choice of n. For
example, if n = 13 then k=13 and k=4 need to be repeated whereas if n = 14 then k = 14,
k =5, and k = 2 need to be repeated in order to satisfy inequality (2).
We can get around the issue of whigtshould be repeated by repeating all of
them for k= 2. The proof of this is quite simple; mathematical induction is used.yLet S
be the statement



n

B) SceE<Eg+2 istruefork=1, 2, ..., n-1.

J
j=n+1-k

If k =1, then we want to show tha{l <&+ 2%, =3¢, Thisis equivalent to

n-1
0<3¢,—-¢€,. ——I %4-2 g 2_1%
+2"

which is equivalent to

(1+2M31-2Y = (1-2")3@+2h.
It is a simple exercise to show that this is true. Now assynsetisie. We want to show
that S+1 is true. Replacing k with k+1 in (5) and taking all terms to the right side of the

inequality to be shown, we have
?

n O n 0
06,42 & =6y = [E, +2 S & ~ &, O3, — £}
0

j=n—k [l j=n+i-k

The first term on the right is nonnegative by the induction hypothesis. The second term
on the right can be shown to be nonnegative by repeating the steps performed in the S
case. Thus,Sstrueforallk=1, 2, ..., n-1.

The pictures | have seen describing the process for the m = -1 case did not help
my understanding of the process. The The Case o =1
picture at the right is similar to that found
in the paper by Schmid and Bogacki. 0l

The CORDIC scheme in the m = -1 case
has recursion equations

Elxkﬂ tO Y27, 0
(6) (Wi = yk +O % 2" .
E Z =2, — O &, 0

for k > 1 whereg, = tanh'2*, Rl R,
Snhé, _ 00 0z 04 05 0B 1 12
coshe,

the hyperbolic identity 1 = cosh- sintfx implies that
(7)  coshe = (1-2%)Y2  sinhg =2 (1 - 2292

Sincetanheg, =

Let Bk =0, + z - z wheref; is to be determined. Then
(8)  Bks1 =6k + Otk
for each iteration of the scheme (6). DefineaRd6y so that x = Rcosh@y) and
Yk = Rsinh@y). It follows from the CORDIC scheme and (8) that
(9)  Re1=(1-2*YR = RdJcoshg, k=1,
for each iteration of (6) where; kS yet to be chosen depending on the function to be
evaluated. Thud; is chosen so that



X1 = RlCOSh(el), Y11= Rlsl nh(el)
It isleft as an exercise for the student to show that (7), (8), and (9) imply that the
CORDIC schemeis satisfied.

We have aready noted that (6) will be iterated twice for all k > 2 and, therefore,
(9) implies that

k o
Re = (1—2‘%”@1 @-2")R

Since we repeat iterations for k = 2 let us denote the first iteration with primes; that is,
X k1 = X + 812 %Yk = Rer1COSh@) 1),
Y1 = Yk + 812 %k = ReaSINh(@' o),
Z'k+1 = Zc - O'kExk.
The second iteration is given by
Xk+1 = X'ke1 + 6k2-ky’ k+1 = Re+1C0Sh@i+1),
Vi1 = Yker + 6k2-kX’ k+1 = Rer1SiNhBx+1),
Zk+1 = Z'k+1 - OkEk-

Consider the rotation mode. Singe=)0 it follows that9; = 0 and x = R;. Thus,
the rotation mode assumes

%=R=0-27"[]a-27)" =K,

y1=0,
71 =6,
Zn+1 = 0

ThenBp+1 =06, R+ =1, and

Xn+1 = COShQ), W1 = Sinh@),
and, therefore,

Xper + Y1 = €.

For what values o® is CORDIC directly applicable and how does one get around
this constraint? Since.z=0, z =6, and 2.1 = z - 0:&1 - 2(9; + 9'j)g;, we must have
BO< &, + 2Z¢;. Butey + 25, > 1.0. Therefore, convergence is guaranteeddars< 1.0.
For arbitraryd we repeatedly add or subtract In(2) to@jet 6 - p In(2) where
[0'0< 1.0. CORDIC is then applied to get

cosh®’ = xp1 and sinl®’ = y,.g.

It follows from hyperbolic function identities that

coshB = %2 ( X1 + Vet )2p + Y2 (%1 - Yoe1 )2-p
and

sinhB =% ( Vo1 T Xn+1 ) P+ Y% ( Vo1 - Xn+l )Z-p.

Now consider the vectoring mode. Since
x1 and y are given with x> (1],
z; =0, and



Y1 =0,
it follows that 6,1 = 0 and, hence, z+1 = z; + 8, = 0;. Therefore, ya1/x; = tanh(6,) and
Zn1 = tanh'l(yllxl).
Moreover, since Rn+1 = R1/K’ in the general case,
Xn+1 = Rn+1COShen+l) = Rn+1 - (X12 _ y12)1/2/K,.

There are two extensions of the vectoring mode. Since
+
tanh™ :llnB!H
2 [1-t[

we sett = yx; with x; =w + 1 and y=w - 1 to get
Zne1 = Y2 IN(W).

Moreover, if x =w + %2 and y=w - ¥, then
Xne1 = WK,

For what x and y can CORDIC be applied directly in the vectoring mode? Since
21 = 0 impliesCizn < 8; + &1 + 25¢; and since; + 25, > 1.0 and g1 = tanh'(y/xy), we
require that[ tanh'(y:/x,)0< 1.0. This is satisfied providédyi/x; < % . Since,
however, the domain of tark is Ix(J < 1, we must deal with ¥%&yy/x;00< 1. Lastly,
since tanfx is an odd function, we shall assume ¥a/&y< 1.

Walther points out in his paper that

(10) tanh'l(l—z'EM):tanh'l(T)+§|n(2)

where
2-M-2FM
C2+M-2FM
Thus, if ¥<yi/xa=1-25M<1,then0<ZM<¥. The constraint 085M < 1 then
implies

, 0.5 M <1, and E 1 integer.

3 _7-4M 2-M 3
— < <T< <-—.
11 7+4M 2+M 5
Therefore, if ¥ yi/x1 < 1 then we can choos& M= 1 - yi/x; that is, we obtain M be
repeatedly multiplying 1 -¥x; by 2 until we get
05<25(1-wxi)=M<1.
To compute tanfir we use the givenpand y to compute new values
X1« 1+M+wX, W<l1l-M+wX;

or
X1<—X1+y1+MX1, M_<—X1+y1-MX1
which are now used in the CORDIC scheme. Then (10) is used to obtafyiaah.

Sincex,,, =+/x° —y,” /K’ is playing the role of r in the theorem and since K’ is
approximately 1.25, thepand y must satisfyy/x,” - y,* < K’<1.25, we force the



X1% - y1° < 1 to apply CORDIC. If this condition is not satisfied, we repeatedly divide
both x; and y; by 2 until their new values satisfy this condition. The desired valueis
obtained by multiplying the CORDIC solution by that power of 2.
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