
EXPLORING THE GINI  INDEX OF INEQUALITY
WITH DERIVE

I.   Introduction :

The Gini index of income or resource inequality is a measure of  the degree to which a population
shares that resource unequally.  It is based on the statistical notion known in the literature as the “mean
difference” of a population.1   The index is scaled to vary from a minimum of zero to a maximum of one, zero
representing no inequality and one representing  a maximum possible degree of inequality.  
  

In order to begin a derivation of the Gini index, consider the lowest 20% of the population,   ranked
by per capita income, and ask what portion of the total income is attributible to this 20%?  If the
corresponding proportion of total income as a percentage is also 20% we will call this fair.  If it is less than
20% we will say there is income inequality.  It cannot be more than 20%.  In general, to measure this, we
define a function, g(α), to be the fraction of the total value of a certain resource belonging to the lowest
(100α)% of the population as ranked by per-capita ownership of that resource.   This curve is defined on the
interval [0,1] and is referred to as the Lorenz curve of the resource distribution.  Here I’ll always convert the
resource into money, usually dollars.  Then the Gini index of inequality is a measure of the difference
between g(α) and the ideal which is assumed to be α, (ie. same percentage of the resource
as portion of the population). 
   
  As a discrete example, in 1960 the small Norwegian city of Moss exhibited the following data2 .
The last column is an estimate of the function g(α) using the center of each income bracket as represen- tative
of that bracket.  

 
    Estimated

Income             # of Males      % of Males       % of income
(in Krona)     (cumulative)   (cumulative)

         0 - 5000    753           11.0       2.0
  5000 - 10000    967           25.2       9.6
10000 - 15000 2,347           59.7     40.4
15000 - 20000 1,786           85.8     73.3
20000 - 25000    493           93.1     84.9
25000 - 30000    202           96.0     90.8
30000 - 35000    270              100.0   100.0

 6818

As can be seen from the last two columns the cumulative percentages are different indicating that there
is uneveness in the income distribution.   In particular, for example, the bottom 25.2% of the men have only
9.6% of the income, while the top 4% of the men have 9.2% of the income.

The graphs of these cumulative percentages appear below with a fitted curve:

2 Lee Soltow, Toward Income Equality in Norway, University of Wisconsin Press, 1965, p.10.

1 M.G. Kendall & A Stuart, The Advanced Theory of Statistics, Vol.1,2nd Ed, Hafner Publishing Co.,
                           NY, 1963.



It might prove to be interesting  to investigate what would happen with a more uniform income
distribution.  If each income category had the same number of individuals for example, then the cumulative
distribution of individuals would be linear from 0 to 100% , and the cumulative distribution of income would
correspond as follows for the same seven categories:

      Estimated
Income                    # of Males         % of Males    % of Income
(in Krona)         (cumulative)     (cumulative)

        0 -   5000 974 14.2 2.0
  5000 - 10000 974 28.6 8.2
10000 - 15000 974 42.9             18.4
15000 - 20000 974 57.1             32.7
20000 - 25000 974 71.4             51.0
25000 - 30000 974 85.7             73.5
30000 - 35000            974             100.0           100.0

             6818

So although the income distribution is “uniform”, the two cumulative distributions are not the same.  In 
fact the actual data for Moss shows less disparity in the two cumulative measures than the above.  So
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a “uniform” income distribution is definitely not fair as reflected in this measure.  Indeed, eventhough the
higher income categories have the same proportion of individuals as do lower income categories  they
obviously have a far larger share of the whole resource.  Thus the measure we are discussing also reflects the
dispersion of the resource distribution as well.  In the case of a distribution with a small variance we 
will find that the Gini measure is in fact close to zero.

II.  Definitions and Theorems:

Formally we begin a population income density function, f(x), defined for x≥0, and F(x), the
corresponding cumulative distribution function where x is per capita income in dollars.   Recall that 
F’(x) = f(x).  Many calculus textbooks introduce these ideas as applications of differentiation and integration.
They certainly appear again in the calculus based statistics course.
  

Then for each number α in the interval [0,1] the Lorenz function, g(α), is defined as that fraction of
the total income which is attributible to the poorest  (100α)% of the given population ranked according to per
capita income, x. 

Note that x⋅(f(x)⋅∆x) approximates a value proportional to the sum total of income attributible 
to individuals with incomes between x and x+∆x, and only proportional because we don’t have the total

number of individuals in the population.  Thus is proportional to the sum total of incomex f x dx
t

⋅∫ ( )
0

attributible to those with incomes less than or equal to t.  Hence the fraction of total income attributible to
those with incomes less than or equal to t is:
 

, where µ  is, by definition, the mean income.
1

0
µ

x f x dx
t

⋅ ⋅∫ ( )

Now if (100α)% is the percentage of the population with income less than or equal to t, ie. the
poorest (100α)% of the population, then α = F(t) and we can assert finally that g(α), the fraction of total
income attributible to the poorest (100α)% of the population,  is:

Theorem:       ,   where α = F(t) and µ is mean income. g x f x dx
t

( ) ( )α
µ

= ⋅∫
1

0

One can show the following inequality for all income distributions.

Theorem:  g(α) ≤ α. 

Proof:  Let .  If h(t) ≥ 0 for all t, then the theorem is proved.h t f x dx x f x dx
t t

( ) ( ) ( )= − ⋅∫ ∫µ
0 0

First note that h(0) = 0 and h(t) →0 as t→∞.  Next we have that h’(t) = µ f(t) − t f(t) = (µ−t)f(t).
Hence h’(t) ≥ 0 for t ≤ µ  and h’(t) ≤ 0 for  t ≥ µ.   Since f(t) ≥ 0 for all t, it thus follows that
h(t) is non-decreasing on [0,µ], while non-increasing on [µ,∞). Clearly then h(t) ≥ 0 on [0,µ]. 
If h(t) were negative at some point of [µ,∞), then we could not have  h(t)→0 as t→∞ .

The formal definition of the Gini index of inequality is:
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Definition (Gini):       2
0

1

[ ( )]α α α−∫ g d

Clearly this is always non-negative.  In the case with g(α)=0, which would be the worst case of 
income inequality, the index is 1, while in the case with g(α)=α, the index is 0 and thus corresponds to
no inequality or perfect equality.  The scale factor of 2 simply insures that the index will range between 0 and
1, rather than 0 and ½. 

III.  Exercise:

Here is an interesting exercise in which Derive is very useful:

Use Derive to determine the Gini index of inequality for a population income distribution
with density function given as:

   for x ≥ 0 and b>0.f x x e b
x
b( ) /= ⋅ − 2

This is an example of the ordinary Gamma distribution, with mean 2b and variance 2b2.  The gamma
distribution is often used to simulate an income distribution.  An interesting fact here is that
the Gini index of inequality does not depend on b!!  
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