291
TEACHING NUMERICAL ANALYSIS

IN A SMALIL COLLEGE ENVIRONMENT

Daniel S. Yates
Randolph-Macon College

The purpose of this paper is to share my experience teaching a
one-semester, undergraduate course in numerical analysis at a small,
four-year private college, Randolph-Macon College, in Ashland,
Virginia. I should say at the outset that I am not an expert at
teaching numerical analysis; to the contrary, I am a novice. I
brought several handicaps which I describe below. Yet I am
encouraged by my first experience. The person I hope to reach with
my commentary is that person who anticipates teaching a numerical
analysis course for the first time and who might avoid some of the
mistakes I made and be reassured by some of my successes.

Randolph-Macon Ceollege has an enrollment of approximately 1000
students and a mathematics faculty of seven. In the past half dozen
years, there has been an average of about 10 math majors each year.
Numerical analysis is not required for the mathematics major but may
be elected by mathematics and computer science majors to satisfy
their requirement for hours in the major field.

The Instructor I joined the R-MC faculty between terms during the
1987-88 school year when there was an unexpected need to identify an
instructor for the numerical analysis course and several
introductory statistics sections. For fifteen years previously, I
had been a mathematics and computer resource teacher for public
schools in the Richmond, Virginia area. My previous college
teaching experience consisted of three years as an instructor at
Virginia Tech in the nineteen sixties. I did have considerable
experience in recent years teaching programming in BASIC and Logo at
the public school and college levels.

My training in mathematics, twenty years ago, consisted
entirely of pure mathematics, with two terms of statistics and no
other experience in any area of applied mathematics. I had neither
taught nor even taken a course on numerical analysis prior to the
spring 1988 term, although I have, in recent years, explored some
numerical techniques, such as writing a program to approximate the
sum of a series and using the bisection method to obtain roots of an
equation on a spreadsheet. I wanted to teach this course for my own
professional development and because of my interest in using the
computer to enhance the teaching of mathematics and to make learning
more efficient (and more appealing to students).

The Course I consulted with several numerical analysis instructors
at nearby universities to get different perspectives on the most
prominent texts. I selected the Burden and Faires text
(Prindle-Webber) because it 15 a respected text, but also because
the authors take what seemed to be a sensible, middle of the road
position on the role of the computer in such a course. That is,




they provide algorithms (without program listings) that are easily
converted into computer code.

For the cne-semester course, taught during the spring term, I
arranged to move the class into the college’s Computer Literacy Lab
in order to have access to a demonstration computer with LCD
overhead projection device and multiple computers and printers (all
aging IBM's).

At Randolph-Macon the fall and spring semesters are short,
lasting only 13 weeks, with a four-week January term in the middle.
Because of the relatively short spring term, the topics to be
covered in the course had to be chosen carefully. The course
sequence reflected my personal preference:

Chapter 1 Mathematical Preliminaries
Review of Calculus
Round-off errors and computer arithmetic
Algorithms and convergence
Chapter 2 Solutions of Equations in One Variable
The bisection algorithm
Fixed point iteration
The Newton-Raphson Method
Error analysis for iterative methods
Hour Test 1

Chapter 2 ALccelerating convergence
Zeros of real polynomials
Chapter 3 Interpolation and Polynomial Approximation

The Taylor polynomials
Interpolation and the Lagrange polynomial
Iterated interpolation.
Hour Test 2
Chapter 6 Direct Methods for Solving Linear Equations
Linear systems of equations
Gaussian elimination and backward
substituticn
Linear algebra and matrix inversion
The determinant of a matrix
Pivoting strategies
Special types of matrices
Direct factorization of matrices
Final Exam (3 hours) comprehensive, but emphasized
Chapter 6 material

Programming The course description in the catalog states that a
prerequisite for the course is a "working knowledge of a computer
programming language." I polled the students to determine their
language of choice and was surprised that all 14 enrolled students
indicated BASIC, although basic computer science courses at the
college provide instruction only in Pascal. My conclusion was that
the students were most comfortable with BASIC from their high school
experience. I indicated that a continuing reguirement in the course
would be to translate the provided algorithms into programs that
executed, and to use these programs to solve selected problems that
included tedious computations.




Things that went well The use of the computer definitely motivated
study of the numerical methods and added an extra dimension by
eliminating much of the tedious computations by hand. 1In fact, I
can’'t imagine teaching this course in any practical way without
having access to the computer, both for in-class demonstrations and
for students to code and use on non-routine problems and
applications. I am convinced that the students perceived the
computer as an indispensable tool and one that freed them to
concentrate on the various approximating methods.

The demonstration computer, in particular, was a most important
asset for it allowed me to follow theoretic discussions of
approximating techniques and algorithms with quick, efficient
solutions to sample problems. Being able to quickly display program
listings, or to graph a complex function made the instructional
process more efficient and demonstrated, over and over, the special
symbiosis between man and computer.

Although I had some reservations about endorsing the use of
BASIC as a programming language in the course (because of the
negative press BASIC has received recently and the emerging role of
Pascal in college computing curricula), I found that the algorithms
translate directly into BASIC without the opportunity for "spaghetti
programming" that detractors say BASIC permits. Non-structured
programming by students was not a factor because of the nature of
the algorithms presented in the text.

I elected to use a function graphing utility on several
occasions when the objective was to approximate roots to specified
degrees of accuracy. Most numerical routines to do this require
that one begin with an interval that brackets a root. Yet we
encountered occasional equations that were sufficiently complex that
the general location of the graph was not easily determined. 1In
these instances, I pointed out to the students that one could make
use of the built-in mathematical functions in BASIC to quickly get a
general feel for the characteristics of a function and its graph.
The two steps are to enter the function into computer memory with a
one—-line program such as:

10 DEF FNF(X) = 16*X"4 — 40*X™3 + 5*¥X™2 + 20*X + 6
and then type, in immediate execution mode:
FOR X = -10 TO 10 : PRINT X, FNF(X) : NEXT

to produce a table of ordered pairs, (x,f(x)). In most cases, one
can determine by inspection where the function is increasing or
decreasing and the general location of the roots (although not for
this example--here, there are two roots between 1 and 2). Of
course, the interval and increment can be modified to either check
another interval or to obtain a refinement within the previous
interval. The students picked up on this technique immediately and
made good use of it thereafter.

Things that did not work well I made the mistake of not providing a
review of BASIC programming syntax prior to the first programming




assignment, and found that about one-third of the students had
programming skills that were weak at best. Subsequently, I departed
from the text to provide an overview of those techniques that they
would need most often. My second mistake was in not providing
practice programming exercises before returning to the text. Those
students with weak skills continued to have trouble with their
coding throughout the course. Next time, I will definitely devote
more time early in the course to insuring that students can guickly
translate the algorithms into code.

Although the move to the computer lab did provide for a
demonstration computer and screen, the other computers in the room
and the fact that each student was facing a computer that is kept
running continucusly provided yet another problem. Students, facing
the front of the room, could surreptitiously develop their own
agenda while giving the impression that they were paying attention
to the instructicn at the front of the room. Suffice it to say that
I will avoid this situation in the future.

I alsc found that the majority of my students had a somewhat
less than satisfactory recall of important results from calculus
(consistent with the "Nothing transfers" hypothesis). But I suspect
that this will always be a source of irritation for teachers
regardless of the role of the computer.

Conclusions and recommendations Having considered the above, I have
made several decisicns for the next time I teach this course (spring
1989), and cffer them for your consideration.

1) Retain the text; it is rigorous but accessible. The
algorithms provided strike a good balance between the mathematics of
the continuous processes that are the principle object of numerical
analysis and the aspects of computers and codes that enable
numerical sclutions.

2) Classroom environment: restrict the eguipment to a single,
demonstration computer with projection capability or linked to large
screen monitor(s).

3) Provide a review of programming language syntax prior to
the first coding assignment.

4) Emphasize to faculty advisors the prerequisite of a working
knowledge of a programming language.

Postscript I would be happy to share my tests and examination

and/or a 5 1/4" disk of programs in BASIC for the IBM with any
prospective numerical analysis instructor who would be interested.
Write to Dr. Dan Yates, Mathematics Department, Randolph-Macon
College, Ashland, VA 23005.




