¢T = Not Just Another Language

Russell C. Walker
Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213

Introduction. Modern computer applications emphasize powerful features such
as high quality graphics, mouse interactiomns, a wvariety of text fonts,
windows, and pop~up menus. While the end wuser finds these applications
appealing and easy to use, only exzceptionally skilled programmers can produce

such applications with today™s programming tools. The ch language 1s
intended to make development of programs employing such features possible for
those with far more limited programming experience.

The historical antecedents of ¢T are the TUTOR and MicroTutor languages
developed by the Computer—based Education Research Laboratory for the PLATO

Systemz at the University of Illinocis at Urbana—Champaign. The TUTOR language

was Iimplemented on Control Data Corporation time sharing systems, and
MicroTutor was designed to run on a variety of persomal computers.

cT was first implemented on the Andrew environment of networked workstationms
at Carnegle Mellon University to provide students and faculty with a language
to easily take advantage of the power of that system. Building on the
efforts of the developers of MicroTutor to produce a language that would rum
on a variety of personal computers, c¢T has been implemented on several
machines. ¢T programs can be run without change om the Macintosh, the IBM

Pﬂs, and the IBM PS!Zﬁ series and the IBM RT PC, Sun 2, Sun 3, and VAXstatiom
II models of advanced function workstations.

Further, because the main motivation of ¢T"s developers was the production of
educational software, ¢T includes features to facilitate handling of student
responses and the presentation of text and graphics. In order to be used by
instructors with a minimum of assistance from professional programmers, cT
includes a highly supportive development environment, including am on-line
reference manual and informative error diagnostics. As the language has
become better knmown, it has also begun to be used in the development of

research toﬂls.5

¢T language features. <¢T includes the usual structures of loop, reloop,
outloop including a unified treatment of until and while; case; and if,
elseif, endif. In addition, it contains a number of commands specifically
designed for educational software development.

A set of graphing commands generates axes and appropriate scaling for
graphs. Tick marks and labele on the axes may be set by the programmer.
Rotatable displays, pattern filled polygons and disks, and animated icons are
also available.

Multi-font text including bold, italics, bigger, smaller, and centered are
available. The display rectangle for text can be adjusted during execution.

Portability between computers is instant. Rescaling features of cT make it
possible for the programmer to minimize the effort necessary to make displays
adapt to differing screen sizes. Because of incompatibilities in fonts, one

dﬂe; encounter difficulties in porting the program 1f specisl symbols are
used.

The menu command places a prompt associated with a routine in the program on
a menu. The type of the menu generated depends on the machine, i.e. pop-up
menus on a workstation, pull-down on a Mac.

On machines that permit several programs to run simultaneously, the execute
command allows a cT program to initiate a Lisp, Fortran, or C program.

Response handling commands permit an entry from the keyboard to be examined

for mathematical accuracy, for correct spelling, inclusion of keywords, or
the inclusion of mathematical operators.

The usual sequencing commands are supplemented by menu entries for the next
routine or the previous routine to facilitate moving through a sequence of
lessons based upon a student”s progress.

The ¢T development environment. Because ¢T 1s designed to allow
inexperienced programmers to develop sophisticated applications with speed
and ease, a number of supportive features are built into the development

enviromnment. Several of the features are illustrated in the figure below
from a Macintosh screen.

l & File Edit Search Styles Fonts Options
display.t ===l cT

$ayntaxievel 1

unit Trial

next Graphic

box 10,10; 130,50
at 20,20

write My first program!
unit Graphic

beck Trial

draw 10,10; 20,30
box 50,50; 80,80
fill 60,60; 70,70
SERERERERE

unit teating

box 26,53;118,197

Commands

Abaolute unit calc do show showt mode pause fine
arrow ot [l circle circleb clip disk
draw erase i1l move text vector plot w

The commands window contains a list of ¢T commands. Clicking on a command
causes that command to be entered in your program at the position of the
insertion pointer. In the figure, the “"box" command appears in reverse video
in the commands window, indicating that that command was entered by a click
in the commands window.

Graphics editing permits screen locations to be entered in the source code by
means of mouse e¢licks. In the figure, the coordinates for the box command
have been entered by clicks at the top left and the bottom right of the box.
The requested box has then been drawn.

An on-line reference manual provides a tree-structured guide to the T
language. The manual 1s accessed by mouse clicks and includes executable
examples that may be copied into a program.

cT programs are incrementally compiled, i.e. when a program is executed, the
procedures needed first are compiled first. When changes are made, only the
changed procedures are recompliled. This gives the speed of a compiled
language, with a quick modify, test, re-modify cycle. A binary version of
the program can be requested.

Useful error diagnostics are provided during both compilation and execution.
Source code 1s scrolled to the location of the error, a message is displayed,
and the insertion pointer placed at the position of the error.

Some sample cT applications.

Simplex Algorithm Mastery (Russell Walker, Mathematics Department, Carnegie
Mellon University)

This program guides a student through the simplex algorithm to solve a linear
program. Computations are done by the program, but the student 1is required
to make all decisions regarding selection of pivots, formation of the dual,
use of artificial wvariables, etc. Errors are detected, their consequences
indicated, and the opportunity to correct the error is presented. For
problems Involving two or three variables, the progress toward solution is
indicated on a graph of the set of feasible solutions.

Graphs & Tracks (David Trowbridge, Center for Development of Educational
Computing, Carnegie Mellon University)

Graphe & Tracks I and II are aimed at the difficulties students have in
making comnections between observations of motion and graphs of that motiom.

In part I, students are presented with a graph and must create a motion that
matches the graph by setting up inclined tracks, positioning a ball, and
starting the ball with a particular initial velocity. Part II goes the other
way: the student views a motion on inclined tracks and must sketch a graph
corresponding to the motion. There 1s abundant feedback to the student.
These programs recently won EDUCOM/NCRIPTAL awards.

Handling of lab data (Robert Schumacher, Physics Department, Carnegie Mellom)

The ability of eT to present graphics, manipulate strings, and initiate
processes In other languages makes it wuseful in the laboratory. In this
application, a ¢T program accepts a bipmary data file, prepares 1t for
processing by a FORTRAN program, and submits the FORTRAN program to a CRAY
supercomputer. When the output is received, it strips off extraneous
material and generates a graphic display of the result. This facility is
used both to process research data and data from a modern physics exzperiment
investigating chaos.

Fourier (Brad Keister and Harry Stumpf, Physics Department, Carnegie Mellon
University)

Designed to help students visualize summation and convergence properties of
Fourier series, this program begins with a tutorial which steps through the
basic sequence of entering parameters and viewing results. The program calls

for a functional form for the Fourler sine and cosine coeffliclents, along
with the end points which define the period interval, and the function which
the series is to represent. A histogram illustrates the relative weights of
the coefficients. The user then enters the maximum number of terms to be
summed, and the resulting partial sum 1s plotted alongside the anticipated
function. Fourier is especially useful for examining convergence properties,
Gibbs phenomena, etc.

1. eT is a service mark of Carnegie Mellon University.

2. The PLATO System is a development of the University of Illinois. PLATO is
a registered trademark of Control Data Corporation.

3. IBM is a registered trademark. PC and PS/2 are trademarks of the
International Business Machines Corporation. Macintosh 1is a registered
trademark of Apple Computers, Imnc.

4. Announcement of PC family implementation expected in early 1989.

5. For a more extensive discussion of ¢T, see "The cT Language and Its Uses:
A Modern Programming Tool™ by B. A. Sherwood and J. N. Sherwood, to appear in
the Proceedings of the Conference on Computers in Physics Instructiom, North
Carolina State University, August 1-5, 1988.

285

