COMPUTATION ERRORS AND THE CALCULUS STUDENT
by Peter Shenkin
John Jay College of Criminal Justice

Calculus is most often taught in what we shall call the 'classical mathematical manner.’ By this we mean that a theory is construel-
ed in which the existence of solutions (or lack of solutions) to certain general types of problems is proved or demonstrated,
Examples generally illustrate the given result almost exactly with 'closed form® solutions the rule. It seems that for the most
part both the topics taught and the methods of teaching have not changed much for the past 20 (50) years. The advent of
handheld calculators and personal computers present an opportunity to modernize the ways in which the concepts of caleu-
lus are taught and possibly to modify the core concepts. We feel that these opportunities have not yet been adequately
exploited. It is true that many calculus texts have added problems which can be solved by calculator or computer, but for the
most part these problems are not integrated into the course itself. The prospect for change is hopeful. Several authors have
already written software packages for caleulus courses and there are several independently written commercial packages
such as those written by John Kemeny at True Basic, Inc. This paper discusses results from several programs and soft-
ware packages developed at the John Jay College and currently being used in calculus and precalculus sections. In particu-
lar, we shall give special emphasis to errors which may ocour when computers are used 1o "prove’ and evaluate results.

An obvious application where computers may be used is in the estimation of limits. It is quite easy, for example, to wrile a
program in BASIC, PASCAL or some higher level language which will permit the student to guess (prove) what the limit of a
certain function at a certain point is by evaluating the function at several arguments getting nearer and nearer o the desired point
(or just getting larger and larger if the limit is at infinity.) The student may see that the value seems 1o be approaching some limit-
ing value. Even though this does not actually show that a limit exists we feel that a computer demonstration of how a sequence
seems to approach some value is a very valuable way of demonstrating just what a limit is.

There are problems with this numerical approach, however. The particular type of problem we would like to talk about in this
paper involves various types of errors which are generated when using computers for computations in calculus course. If
these errors are not considered then computer results can be misleading and even entirely incorrect.

A typical example is the evaluation of the limit of (1+1/%)"x as x goes to infinity. From classical calculus we know that the
limit is @ or about 2.718281828459045. The results from the programs ESINGS.BAS, and ESINGERR.BAS displayed in the appendix
were calculated using Microsoft's QUIKBASIC 4.0 and show an interesting resull. f we keep x below about 2500 then it seems that
as x gets large our function is approaching 2.71.... So the student in effect 'proves’ what the limit is by looking at a finite number of
terms. This is certainly not correct in the classical mathematical sense but to most students this seems like going to the limit. In
this particular case a seemingly (lo the student) strange thing happens x is increased further and further, At first it seems that there
is no limit. Then we reach a new limit. This new limit seems to be 1. How did this occur?

In actuality, BASIC was only holding 7 significant digits of every number. 14 1/x eventually becomes 1 (in the computer) as
x increases and 1 to any power is 1. Thus just about all significance was lost. Pity the poor student who ‘proved’ that the
limit is 1 via this example. Notice that in ESINGERR.BAS we managed to display more than 7 digits even though BASIC only
supports 7 in its 'single precision’ mode. Even the values of 1 + 1/x are incorrect in ESINGERR.BAS as the 1 + 1/x ERROR column
indicates. Note, also from ESINGERR.BAS that even though single precision gives 7 digits of accuracy our estimate seems 1o be
most accurate when x has only 4 digits (x=2580).

EDOUB.BAS is the essentially the same program as ESINGERR.BAS with the exception that all computations are done in "double
precision’ mode. This means that there are 15 or 16 digits of accuracy in values and computations. Motice how much closer our
results come to the "true’ limit in this case. However, we do give a printout which shows that even with double precision, if we let x
increase enough we get a Timit" of 1.

The graphs of {1 + 1/x)"x shown were generated by a graphics program described in "A Computer Companion for Undergraduate
Mathematics” by Wieschenberg and Shenkin and graphically display the results shown in EDOUB.BAS. The graphics program was
written in True BASIC. These graphs seem to indicate that (1 + 1/x)"x approaches zero very rapidly (in the computer) for a value of
x In the neighborhood of SE15.
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When the computer is used to numerically sclve calculus type problems several types of errors may occur:

Roundolf error - Due to the 'discreteness’ of the computer’s number system. e.g. using QUIKBASIC single precision only 7
digits matter.

Truncation error - Occurs when & process requiring an infinite number of steps is terminated after a finite number of steps, e.g.
stop the above process for x=25680 or truncate all Taylor series terms after the fifth term.

Propagated error - Error caused by error in some initial input, .g. approximats Pl
Significance error - number of meaningful digits (significant digits) in an answer is less than expected.

Overflow and Underflow Error - Error caused when calculations, including intermediate calculations, get larger than the
computer’s infinity or closer to 0 than the smallest computer non-zero value.

‘We will look at the definite integral of m:p{-le to examine some of thess types of aror.

The program ETOXDBL.BAS (see Appendix) computes the definite integral of ﬂ:p{-xz:l betwean 0 and some value input during the
run of the program. The computations are done in double precision. A companion program, ETOX.BAS computes the same results
using single precision arithmetic This program is not shown in the Appendix These programs use Taylor series approximations with a
number of terms also chosen during the run of the program. The series for mtp{-nz} and the resulting integral approximation are
convergent alternating series so the last term gives a good idea of the size of the emror at least if enough terms are taken. If we look
at some runs of the programs we see several things regarding error,

1. Truncation error can be a major factor. In fact look at the display showing an integral with limits from 0 to 3 with 13 terms has
a value of over 70 for the last retained term. However, if the upper limit equals 1 the last term is on the order of ln" : 2

2, The classical truncation error bound (15t neglected term with alternating series of decreasing terms) is meaningless in zingle
precision when these bounds yield values on the order of 1|!:|'EI while we are working with integral of order 1 with six or seven signif-
icant digits.

3. By comparing single and double precision printouts we see that roundoff error isn’t severe but single precision is not neces-

sarily accurate to 7 significant digits. Of course in the limiting process for @ mentionad previously we saw that roundoff and signifi-
cance error might be severe.

The results from the programs ATSSNG, RTSDEL compare the rectangular, trapezoidal and Simpsons rule for various interval
widths. Note some of the following results:

1. The example printout from RTSSNG.BAS with up{-tzi as the integrand shows that, at least in the single precision case,
increasing the number of subintervals does not necessarily improve the approximation.

2. This is again shown in the example where x"3 is integrated. Theoretically Simpson's rule should be exact here, However, look
at the results as the number of subintervals increases.

3. We also show some results using the rectangular rule, the trapezoidal rule and Simpson's rule where we approximated e by
2.7. The results showed small changes in value all in the direction expected. This is an example of propagation error and does not
seem to be serious in the integration problems we are tackling.

In conclusion, we feel that the student should be exposed to examples such as those described to aid them in resulis gotten by
using a simple numerical rule as implemented on a computer may be more in error than theory as usually given in beginning
calculus courses would indicate, The hands on, especially the interactive approach would probably be most useful to the greatest
number of students.
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