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Second and third year courses in Advanced Engineering Mathematics or
differential equations traditionally cover models or equations that admit a
simple closed form solution. Techniques such as perturbation and group
analysis, while in principle no more difficult than some of the more traditional
topics, cannot at present be effectively taught at this level because the
intermediate computations are so complicated. The advent of Mathematica ™
and other such systems changes this. We give an example of how
Mathematica ™ can be used in a classroom situation to study nonlinear
ordinary differential equations. In particular, we show how Mathematica ™ can

be used to study periodic solutions to the Duffing equation by means of
perturbation .

In various courses, entitled Advanced Engineering Mathematics or differential
equations various classical ordinary differential equations are studied. These include first
order equations, second order linear equations with constant coefficients, and if time
permits, some particular second order linear equations such as Bessel's equation.
Increasingly, such courses include some numerical techniques for finding approximate
solutions to those equations that one cannot solve explicitly. One such equation is
Duffing's equation, which models a hard spring:

y" +c2y + phy3 =0,
subject to the initial conditions y(0) = A, y'(0) = 0. This equation models a hard spring,
i.e., where the restoring force c¢2x + pthy3 of the spring depends nonlinearly on the
displacement y. When | = 0, this is just an ordinary linear spring. By making a change of
variables, (and changing 1 and A) we may rewrite this equation (with initial conditions) as
" +x +pux3 =0 (1)
x(0) = A , x'(0) = 0

Where x(t) is the (scalled) displacement. If p =0, then it is well known that the
solution is A cos(t). (Guess Cj cos(t) + Casin(t). Given that x(0) = A and x'(0) = 0, then
the solution is A cos(t).) By numerically solving Duffing's equation (1) for values of p
near zero, we can get some idea of how the nonlinear term " px3" contributes to the
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qualitative behavior of the solution. But by doing this we really don't obtain any hard
information, all that we get is our impression obtained by looking at several graphs. To
obtain more information, we must use some of the analytical techniques for finding
approximate solutions. Unfortunately, many of these techniques require extensive
computation. However, it is this author's claim that some of these methods are no more
difficult in principle than some of the methods currently in the curriculum. In what
follows, we study, with the help of Marhematica ™, approximate analytic solutions of the
the Duffing's equation. In particular, we obtain approximate solutions that are accurate
within a given power of |.. This particular problem is chosen for at least two reasons:
1. The computations, while laborious, can be done by hand. When stating off
with a new technique with a symbolic manipulator, it is important to be able to
relate what is going on inside the computer system to what we already can

do. I would not recommend actually carrying all of the details out be hand,
but one can do some of the parts by hand.

2. The answer to this problem is (at least in some circles) well known. Thus
the instructor will either know of this example, or can look it up in many
E standard texts, e.g., [1,2].

3 -

= Hard Spring
-+ Spring

] The restoring force of a spring and a hard spring --
p=0.1
All right, here we go. Let N = 1 (or 2 latter on, or larger if you have the patience or
computer time). We will look for periodic solutions. Of course the period of the solutions
depends on . If g = 0 then solutions are periodic with period 2m. Let us guess that the
period as a function of | is 2nw where:
®=1+pw; + p2o + p3oi+ ... + pNoy + OuN+1) (2)
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We will guess that x(t) can be written as a series on Ji:
x(t) = ug(@t) + puj(t)+ ... + pNuy(ot) + O(pN+1) (3)
Where each u;(-) is a periodic function of period 2n. Letting T = wt, then Duffing's
equation (1) becomes:
m?ﬂ+x+ux3 = 0 (4)

Using Mathematica ™ (or doing the computations by hand) we plug (2) and (3) into (4),
keeping only the terms of order less than or equal to uN. We now collect terms based on
powers of 1. The zeroth order terms give:

b _‘.1@_4_“0 =0.

dt2
This is easily solved, using the initial conditions ug(0) = A, ug'(0) = 0, to give up(t) =
A cos[t]. This now tell us that:
x(t) = A cos(wt) + O()), where @ =1 + O(p).
Plugging back this value for ug into the expanded equation, we get the first order terms:

pl: ';—1“2]- +u] = (2&:1 A - 3%-3-):03(1) —%3 cos(31)

The solutions of this will not be periodic unless the coefficient of cos(t) on the right hand
side is zero. So we set this coefficient equal to zero:

(Zmlh-a-%i)ﬁ}

3
and solve for @;. This gives @] = -3-3-. Plugging this back into the pu! equation above, we

get:
d2uy
dt2
If we find a solution of this with uj(0) = 0 and uy'(0) = 0, then ug(t) + puj(t) will satisfy
the initial conditions x(0) = A, x'(0) = 0. We do this (in Mathematica ™ ) by the method of
undetermined coefficients, and conclude that

A3 3
(ot = ( A {:Snzs[mt] - A mg%mﬂ) '

3
where =1+ Eg— + O(u2). Remembering back to our guess for x, this gives
U(-AS cos[wt] A3 cos[3wt]
;' TR 32

3
+u] =- hT cos(31)

x()= A cos[wt] + ) +0(u?)
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Note that this (approximate) solution of Duffing's equations tells us more than we
could have obtained from studying plots of numerical solutions. It in fact tells us what the
(approximate) frequency shift from the harmonic oscillator (u=0) case, and the presence of
the "harmonic component" cos(3wt). Carrying out the second order calculation in
Mathemarica ™ we get:

_A3 3
x[t] = A cos[w] +“( & 53“25[““] - cﬂgsj{ﬁ_mt])

3 AS cos[wt] 3A5 cos[3wt] A3 cos[5mt] 3
1024 - = o I )”D[”]

+ p2
where
3A2 21 A4p?
W =14+ _B_jl g '756“' + D[H}]
Note: The technical report version of this paper contains an appendix listing the
Mathematica ™ notebook Duffing, in which the computations of this paper are done.
This may be obtained from the author.
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